
Vehicle Network Toolbox™
User's Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Vehicle Network Toolbox™ User's Guide
© COPYRIGHT 2009–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2009 Online only New for Version 1.0 (Release 2009a)
September 2009 Online only Revised for Version 1.1 (Release 2009b)
March 2010 Online only Revised for Version 1.2 (Release 2010a)
September 2010 Online only Revised for Version 1.3 (Release 2010b)
April 2011 Online only Revised for Version 1.4 (Release 2011a)
September 2011 Online only Revised for Version 1.5 (Release 2011b)
March 2012 Online only Revised for Version 1.6 (Release 2012a)
September 2012 Online only Revised for Version 1.7 (Release 2012b)
March 2013 Online only Revised for Version 2.0 (Release 2013a)
September 2013 Online only Revised for Version 2.1 (Release 2013b)
March 2014 Online only Revised for Version 2.2 (Release 2014a)
October 2014 Online only Revised for Version 2.3 (Release 2014b)
March 2015 Online only Revised for Version 2.4 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)
September 2017 Online only Revised for Version 3.4 (Release 2017b)
March 2018 Online only Revised for Version 4.0 (Release 2018a)
September 2018 Online only Revised for Version 4.1 (Release 2018b)
March 2019 Online only Revised for Version 4.2 (Release 2019a)
September 2019 Online only Revised for Version 4.3 (Release 2019b)
March 2020 Online only Revised for Version 4.4 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Vehicle Network Toolbox Product Description . 1-2
Key Features . 1-2

Toolbox Characteristics and Capabilities . 1-3
Vehicle Network Toolbox Characteristics . 1-3
Interaction Between the Toolbox and Its Components 1-4
Prerequisite Knowledge . 1-5

Vehicle Network Communication in MATLAB . 1-6
Transmit Workflow . 1-6
Receive Workflow . 1-7

Transmit and Receive CAN Messages . 1-8
Discover Installed Hardware . 1-8
Create CAN Channels . 1-8
Configure Channel Properties . 1-10
Start the Channels . 1-11
Create a Message . 1-12
Pack a Message . 1-13
Transmit a Message . 1-13
Receive a Message . 1-14
Unpack a Message . 1-17
Save and Load CAN Channels . 1-17
Disconnect Channels and Clean Up . 1-17

Filter Messages . 1-19

Multiplex Signals . 1-20

Configure Silent Mode . 1-23

Hardware Support Package Installation
2

Install Hardware Support Package for Device Driver 2-2
Install Support Packages . 2-2
Update or Uninstall Support Packages . 2-2

iii

Contents

CAN Communication Workflows
3

CAN Transmit Workflow . 3-2

CAN Receive Workflow . 3-3

Using a CAN Database
4

Load .dbc Files and Create Messages . 4-2
Vector CAN Database Support . 4-2
Load the CAN Database . 4-2
Create a CAN Message . 4-2
Access Signals in the Constructed CAN Message 4-3
Add a Database to a CAN Channel . 4-3
Update Database Information . 4-3
Create and Process Messages Using Database Definitions 4-3

View Message Information in a CAN Database . 4-13

View Signal Information in a CAN Message . 4-15

Attach a CAN Database to Existing Messages . 4-16

Monitoring Vehicle CAN Bus
5

Vehicle CAN Bus Monitor . 5-2
About the Vehicle CAN Bus Monitor . 5-2
Opening the Vehicle CAN Bus Monitor . 5-2
Vehicle CAN Bus Monitor Fields . 5-2

Using the Vehicle CAN Bus Monitor . 5-7
View Messages on a Channel . 5-7
Configure the Channel Bus Speed . 5-7
Filter CAN Messages in Vehicle CAN Bus Monitor 5-7
Attach a Database . 5-8
Change the Message Count . 5-10
Change the Number Format . 5-10
View Unique Messages . 5-10
Save the Message Log File . 5-10

iv Contents

XCP Communication Workflows
6

XCP Database and Communication Workflow . 6-2

A2L File
7

Inspect the Contents of an A2L File . 7-2
Access an A2L File . 7-2
Access Measurement Information . 7-2
Access Event Information . 7-3

Universal Measurement & Calibration Protocol (XCP)
8

XCP Hardware Connection . 8-2
Create XCP Channel Using CAN Device . 8-4
Configure the Channel to Unlock the Slave . 8-4

Read a Single Value . 8-6

Write a Single Value . 8-7

Read a Calibrated Measurement . 8-8

Acquire Measurement Data via Dynamic DAQ Lists 8-9

Stimulate Measurement Data via Dynamic STIM Lists 8-10

J1939
9

J1939 Interface . 9-2

J1939 Parameter Group Format . 9-3

J1939 Network Management . 9-4
Address Claiming . 9-4

J1939 Transport Protocols . 9-5

J1939 Channel Workflow . 9-6

v

CAN Communications in Simulink
10

Vehicle Network Toolbox Simulink Blocks . 10-2

CAN Communication Workflows in Simulink . 10-3
Message Transmission Workflow . 10-3
Message Reception Workflow . 10-4

Open the Vehicle Network Toolbox Block Library 10-6
Using the Simulink Library Browser . 10-6
Using the MATLAB Command Window . 10-6

Build CAN Communication Simulink Models . 10-7
Build the Message Transmit Part of the Model . 10-7
Build the Message Receive Part of the Model . 10-9
Save and Run the Model . 10-13

Create Custom CAN Blocks . 10-15
Blocks Using Simulink Buses . 10-15
Blocks Using CAN Message Data Types . 10-16

Hardware Limitations
11

Vector Hardware Limitations . 11-2

Kvaser Hardware Limitations . 11-3

National Instruments Hardware Limitations . 11-4

File Format Limitations . 11-5
MDF-File . 11-5
CDFX-File . 11-5
BLF-File . 11-5

Platform Support . 11-6

XCP Communications in Simulink
12

Vehicle Network Toolbox XCP Simulink Blocks . 12-2

Open the Vehicle Network Toolbox XCP Block Libraries 12-3
Using the MATLAB Command Window . 12-3
Using the Simulink Library Browser . 12-3

vi Contents

Functions
13

Properties
14

Blocks
15

vii

Getting Started

• “Vehicle Network Toolbox Product Description” on page 1-2
• “Toolbox Characteristics and Capabilities” on page 1-3
• “Vehicle Network Communication in MATLAB” on page 1-6
• “Transmit and Receive CAN Messages” on page 1-8
• “Filter Messages” on page 1-19
• “Multiplex Signals” on page 1-20
• “Configure Silent Mode” on page 1-23

1

Vehicle Network Toolbox Product Description
Communicate with in-vehicle networks using CAN, J1939, and XCP protocols

Vehicle Network Toolbox provides MATLAB® functions and Simulink® blocks to send, receive, encode,
and decode CAN, CAN FD, J1939, and XCP messages. The toolbox lets you identify and parse specific
signals using industry-standard CAN database files and then visualize the decoded signals using the
CAN Bus Monitor app. Using A2L description files, you can connect to an ECU via XCP on CAN or
Ethernet. You can access messages and measurement data stored in MDF files.

The toolbox simplifies communication with in-vehicle networks and lets you monitor, filter, and
analyze live CAN bus data, or log and record messages for later analysis and replay. You can simulate
message traffic on a virtual CAN bus or connect to a live network or ECU. Vehicle Network Toolbox
supports CAN interface devices from Vector, Kvaser, PEAK-System, and National Instruments®.

Key Features
• MATLAB functions for transmitting and receiving CAN, CAN FD, J1939, and XCP messages
• Simulink blocks for communicating over CAN, CAN FD, J1939 or XCP protocols
• XCP support for interacting with ECUs over Ethernet or CAN
• Vector CAN database (.dbc) file, A2L description file, and MDF file support
• Vehicle CAN Bus Monitor app to configure devices and visualize live CAN network traffic
• Signal packing and unpacking for simplified encoding and decoding of CAN messages, CAN FD

messages, and J1939 parameter groups
• Support for Vector, Kvaser, PEAK-System, and National Instruments CAN interface devices and for

virtual channels

1 Getting Started

1-2

Toolbox Characteristics and Capabilities
In this section...
“Vehicle Network Toolbox Characteristics” on page 1-3
“Interaction Between the Toolbox and Its Components” on page 1-4
“Prerequisite Knowledge” on page 1-5

Vehicle Network Toolbox Characteristics
The toolbox is a collection of functions built on the MATLAB technical computing environment.

You can use the toolbox to:

• “Connect to CAN Devices” on page 1-3
• “Use Supported CAN Devices and Drivers” on page 1-3
• “Communicate Between MATLAB and CAN Bus” on page 1-3
• “Simulate CAN Communication” on page 1-3
• “Visualize CAN Communication” on page 1-3

Connect to CAN Devices

Vehicle Network Toolbox provides host-side CAN connectivity using defined CAN devices. CAN is the
predominant protocol in automotive electronics by which many distributed control systems in a
vehicle function.

For example, in a common design when you press a button to lock the doors in your car, a control unit
in the door reads that input and transmits lock commands to control units in the other doors. These
commands exist as data in CAN messages, which the control units in the other doors receive and act
on by triggering their individual locks in response.

Use Supported CAN Devices and Drivers

You can use Vehicle Network Toolbox to communicate over the CAN bus using supported Vector,
Kvaser, PEAK-System, or National Instruments devices and drivers.

See “Vehicle Network Toolbox Supported Hardware” for more information.

Communicate Between MATLAB and CAN Bus

Using a set of well-defined functions, you can transfer messages between the MATLAB workspace
and a CAN bus using a CAN device. You can run test applications that can log and record CAN
messages for you to process and analyze. You can also replay recorded sequences of messages.

Simulate CAN Communication

With Vehicle Network Toolbox block library and other blocks from the Simulink library, you can create
sophisticated models to connect to a live network and to simulate message traffic on a CAN bus.

Visualize CAN Communication

Using Vehicle CAN Bus Monitor, a simple graphical user interface, you can monitor message traffic
on a selected device and channel. You can then analyze these messages.

 Toolbox Characteristics and Capabilities

1-3

Interaction Between the Toolbox and Its Components
Vehicle Network Toolbox is a conduit between MATLAB and the CAN bus.

In this illustration:

• Six CAN modules are attached to a CAN bus.
• One module, which is a CAN device, is attached to the Vehicle Network Toolbox, built on the

MATLAB technical computing environment.

Using Vehicle Network Toolbox from MATLAB, you can configure a channel on the CAN device to:

• Transmit messages to the CAN bus.
• Receive messages from the CAN bus.
• Trigger a callback function to run when the channel receives a message.
• Attach the database to the configured CAN channel to interpret received CAN messages.
• Use the CAN database to construct messages to transmit.
• Log and record messages and analyze them in MATLAB.
• Replay live recorded sequence of messages in MATLAB.
• Build Simulink models to connect to a CAN bus and to simulate message traffic.
• Monitor CAN traffic with the “Vehicle CAN Bus Monitor” on page 5-2.

1 Getting Started

1-4

Vehicle Network Toolbox is a comprehensive solution for CAN connectivity in MATLAB and Simulink.
Refer to the Functions and Simulink Blocks for more information.

Prerequisite Knowledge
The Vehicle Network Toolbox document set assumes that you are familiar with these products:

• MATLAB — To write scripts and functions, and to use functions with the command-line interface.
• Simulink — To create simple models to connect to a CAN bus or to simulate those models.
• Vector CANdb — To understand CAN databases, along with message and signal definitions.

 Toolbox Characteristics and Capabilities

1-5

Vehicle Network Communication in MATLAB
Workflows in this section are sequential and will help you understand how the communication works.
You can also see code snippets and map them to the examples in the next section.

Transmit Workflow

1 Getting Started

1-6

Receive Workflow

 Vehicle Network Communication in MATLAB

1-7

Transmit and Receive CAN Messages
In this section...
“Discover Installed Hardware” on page 1-8
“Create CAN Channels” on page 1-8
“Configure Channel Properties” on page 1-10
“Start the Channels” on page 1-11
“Create a Message” on page 1-12
“Pack a Message” on page 1-13
“Transmit a Message” on page 1-13
“Receive a Message” on page 1-14
“Unpack a Message” on page 1-17
“Save and Load CAN Channels” on page 1-17
“Disconnect Channels and Clean Up” on page 1-17

Discover Installed Hardware
In the example, you discover your system CAN devices with canChannelList, then create two CAN
channels using canChannel. Later, you edit the properties of the first channel and create a message
using canMessage, then transmit the message from the first channel using transmit, and receive it
on the other channel using receive.

1 Get information about the CAN hardware devices on your system.

info = canChannelList

info =

 14×6 table

 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 _____________ _______________________ _______ _____________________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "Vector" "VN1610 1" 1 "VN1610" "CAN, CAN FD" "18959"
 "Vector" "VN1610 1" 2 "VN1610" "CAN, CAN FD" "18959"
 "Vector" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "Vector" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "PEAK-System" "PCAN-USB Pro" 1 "PCAN-USB Pro" "CAN, CAN FD" "0"
 "PEAK-System" "PCAN-USB Pro" 2 "PCAN-USB Pro" "CAN, CAN FD" "0"
 "Kvaser" "USBcan Professional 1" 1 "USBcan Professional" "CAN" "10680"
 "Kvaser" "USBcan Professional 1" 1 "USBcan Professional" "CAN" "10680"
 "Kvaser" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "Kvaser" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "NI" "9862 CAN/HS (CAN1)" 1 "9862" "CAN, CAN FD" "17F5094"
 "NI" "9862 CAN/HS (CAN2)" 1 "9862" "CAN, CAN FD" "17F50B2"

Note To modify this example for a hardware CAN device, make a loopback connection between the
two channels.

Create CAN Channels
Create two MathWorks virtual CAN channels.

1 Getting Started

1-8

canch1 = canChannel('MathWorks','Virtual 1',1)
canch2 = canChannel('MathWorks','Virtual 1',2)

canch1 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

canch2 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0

 Transmit and Receive CAN Messages

1-9

 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

For each channel, notice that its initial Running value is 0 (stopped), and its bus speed is 500000.

Note You cannot use the same variable to create multiple channels sequentially. Clear any channel
before using the same variable to construct a new CAN channel.

You cannot create arrays of CAN channel objects. Each object you create must be assigned to its own
scalar variable.

Configure Channel Properties
You can set the behavior of your CAN channel by configuring its property values. For this exercise,
change the bus speed of channel 1 to 250000 using the configBusSpeed function.

Tip Configure property values before you start the channel.

1 Change the bus speed of both channels to 250000, then view the channel BusSpeed property to
verify the setting.

configBusSpeed(canch1,250000)
canch1.BusSpeed

ans =

 250000

2 You can also see the updated bus speed in the channel display.

canch1

canch1 =

1 Getting Started

1-10

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

3 In a similar way, change the bus speed of the second channel.

configBusSpeed(canch2,250000)

Start the Channels
After you configure their properties, start both channels. Then view the updated status information of
the first channel.

start(canch1)
start(canch2)
canch1

canch1 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'

 Transmit and Receive CAN Messages

1-11

 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

Notice that the channel Running property value is now 1 (true).

Create a Message
After you set all the property values as desired and your channels are running, you are ready to
transmit and receive messages on the CAN bus. For this exercise, transmit a message using canch1
and receive it using canch2. To transmit a message, create a message object and pack the message
with the required data.

Build a CAN message with a standard type ID of 500, and a data length of 8 bytes.

messageout = canMessage(500,false,8)

messageout =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 500
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0

1 Getting Started

1-12

 Data: [0 0 0 0 0 0 0 0]
 Signals: []
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: []
 UserData: []

Some of the properties of the message indicate:

• Error — A logical 0 (false) because the message is not an error.
• Remote — A logical 0 (false) because the message is not a remote frame.
• ID — The ID you specified.
• Extended — A logical 0 (false) because you did not specify an extended ID.
• Data — A uint8 array of 0s, with size specified by the data length.

Refer to the canMessage function to understand more about its input arguments.

Pack a Message
After you create the message, pack it with the required data.

1 Use the pack function to pack your message with these input parameters: a Data value of 25,
start bit of 0, signal size of 16, and byte order using little-endian format. View the message Data
property to verify the settings.

pack(messageout,25,0,16,'LittleEndian')
messageout.Data

ans =

 1×8 uint8 row vector

 25 0 0 0 0 0 0 0

The only message property that changes from packing is Data. Refer to the pack function to
understand more about its input arguments.

Transmit a Message
Now you can transmit the packed message. Use the transmit function, supplying the channel
canch1 and the message as input arguments.

transmit(canch1,messageout)
canch1

canch1 =

 Transmit and Receive CAN Messages

1-13

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 1
 MessagesReceived: 0
 MessagesTransmitted: 1
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

MATLAB displays the updated channel. In the Status Information section, the
MessagesTransmitted value increments by 1 each time you transmit a message. The message to be
received is available to all devices on the bus, so it shows up in the MessagesAvailable property
even for the transmitting channel.

Refer to the transmit function to understand more about its input arguments.

Receive a Message
Use the receive function to receive the available message on canch2.

1 To see messages available to be received on this channel, type:

canch2

canch2 =

 Channel with properties:

1 Getting Started

1-14

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 1
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

The channel status information indicates 1 for MessagesAvailable.
2 Receive one message on canch2 and assign it to messagein.

messagein = receive(canch2,1)

messagein =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 500
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0.0312
 Data: [25 0 0 0 0 0 0 0]
 Signals: []
 Length: 8

 Protocol Flags
 Error: 0

 Transmit and Receive CAN Messages

1-15

 Remote: 0

 Other Information
 Database: []
 UserData: []

Note the received message Data property. This matches the data transmitted from canch1.

Refer to the receive function to understand more about its input arguments.
3 To check if the channel received the message, view the channel display.

canch2

canch2 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 0
 MessagesReceived: 1
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

The channel status information indicates 1 for MessagesReceived, and 0 for
MessagesAvailable.

1 Getting Started

1-16

Unpack a Message
After your channel receives a message, specify how to unpack the message and interpret the data in
the message. Use unpack to specify the parameters for unpacking a message; these should
correspond to the parameters used for packing.

value = unpack(messagein,0,16,'LittleEndian','int16')

value =

 int16

 25

Refer to the unpack function to understand more about its input arguments.

Save and Load CAN Channels
You can save a CAN channel object to a file using the save function anytime during the CAN
communication session.

To save canch1 to the MATLAB file mycanch.mat, type:

save mycanch.mat canch1

If you have saved a CAN channel in a MATLAB file, you can load the channel into MATLAB using the
load function. For example, to reload the channel from mycanch.mat which was created earlier,
type:

load mycanch.mat

The loaded CAN channel object reconnects to the specified hardware and reconfigures itself to the
specifications when the channel was saved.

Disconnect Channels and Clean Up
• “Disconnect the Configured Channels” on page 1-17
• “Clean Up the MATLAB Workspace” on page 1-18

Disconnect the Configured Channels

When you no longer need to communicate with your CAN bus, use the stop function to disconnect
the CAN channels that you configured.

1 Stop the first channel.

stop(canch1)
2 Check the channel status.

canch1

.

.

 Transmit and Receive CAN Messages

1-17

.
 Status Information
 Running: 0
 MessagesAvailable: 1
 MessagesReceived: 0
 MessagesTransmitted: 1

3 Stop the second channel.

stop(canch2)
4 Check the channel status.

canch2

.

.

.
 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 1
 MessagesTransmitted: 0

Clean Up the MATLAB Workspace

When you no longer need these objects and variables, remove them from the MATLAB workspace
with the clear command.

1 Clear each channel.

clear canch1
clear canch2

2 Clear the CAN messages.

clear messageout
clear messagein

3 Clear the unpacked value.

clear value

See Also

Related Examples
• “Filter Messages” on page 1-19
• “Multiplex Signals” on page 1-20
• “Configure Silent Mode” on page 1-23

1 Getting Started

1-18

Filter Messages
You can set up filters on your channel to accept messages based on the filtering parameters you
specify. Set up your filters before putting your channel online. For more information on message
filtering, see these functions:

• filterAllowAll
• filterBlockAll
• filterAllowOnly

To specify message names you want to filter, create a CAN channel and attach a database to the
channel.

canch1 = canChannel('Vector','CANcaseXL 1',1);
canch1.Database = canDatabase('demoVNT_CANdbFiles.dbc');

Set a filter on the channel to allow only the message EngineMsg, and display the channel
FilterHistory property.

filterAllowOnly(canch1,'EngineMsg');
canch1.FilterHistory

 Standard ID Filter: Allow Only | Extended ID Filter: Allow All

When you start the channel and receive messages, only those marked EngineMsg pass through the
filter.

For more information about using a message database, see “Message Database”.

See Also

Related Examples
• “Transmit and Receive CAN Messages” on page 1-8

 Filter Messages

1-19

Multiplex Signals
Use multiplexing to represent multiple signals in one signal’s location in a CAN message’s data. A
multiplexed message can have three types of signals:

• Standard signal — This signal is always active. You can create one or more standard signals.
• Multiplexor signal — Also called the mode signal, it is always active and its value determines

which multiplexed signal is currently active in the message data. You can create only one
multiplexor signal per message.

• Multiplexed signal — This signal is active when its multiplex value matches the value of the
multiplexor signal. You can create one or more multiplexed signals in a message.

Multiplexing works only with a CAN database with message definitions that already contain multiplex
signal information. This example shows you how to access the different multiplex signals using a
database constructed specifically for this purpose. This database has one message with these signals:

• SigA — A multiplexed signal with a multiplex value of 0.
• SigB — Another multiplexed signal with a multiplex value of 1.
• MuxSig — A multiplexor signal, whose value determines which of the two multiplexed signals are

active in the message.

For example,

1 Create a CAN database.

d = canDatabase('Mux.dbc')

Note This is an example database constructed for creating multiplex messages. To try this
example, use your own database.

2 Create a CAN message.

m = canMessage(d,'Msg')

m =

 can.Message handle
 Package: can

 Properties:
 ID: 250
 Extended: 0
 Name: 'Msg'
 Database: [1x1 can.Database]
 Error: 0
 Remote: 0
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]
 Signals: [1x1 struct]

 Methods, Events, Superclasses
3 To display the signals, type:

m.Signals

1 Getting Started

1-20

ans =

 SigB: 0
 SigA: 0
 MuxSig: 0

MuxSig is the multiplexor signal, whose value determines which of the two multiplexed signals
are active in the message. SigA and SigB are the multiplexed signals that are active in the
message if their multiplex values match MuxSig. In the example shown, SigA is active because
its current multiplex value of 0 matches the value of MuxSig (which is 0).

4 If you want to make SigB active, change the value of the MuxSig to 1.

m.Signals.MuxSig = 1

To display the signals, type:

m.Signals

ans =

 SigB: 0
 SigA: 0
 MuxSig: 1

SigB is now active because its multiplex value of 1 matches the current value of MuxSig (which
is 1).

5 Change the value of MuxSig to 2.

m.Signals.MuxSig = 2

Here, neither of the multiplexed signals are active because the current value of MuxSig does not
match the multiplex value of either SigA or SigB.

 m.Signals

 ans =

 SigB: 0
 SigA: 0
 MuxSig: 2

Always check the value of the multiplexor signal before using a multiplexed signal value.

if (m.Signals.MuxSig == 0)
% Feel free to use the value of SigA however is required.
end

This ensures that you are not using an invalid value, because the toolbox does not prevent or
protect reading or writing inactive multiplexed signals.

Note You can access both active and inactive multiplexed signals, regardless of the value of the
multiplexor signal.

Refer to the canMessage function to learn more about creating messages.

 Multiplex Signals

1-21

See Also

Related Examples
• “Transmit and Receive CAN Messages” on page 1-8

1 Getting Started

1-22

Configure Silent Mode
The SilentMode property of a CAN channel specifies that the channel can only receive messages and
not transmit them. Use this property to observe all message activity on the network and perform
analysis without affecting the network state or behavior. See SilentMode for more information.

1 Change the SilentMode property of the first CAN channel, canch1 to true.

canch.SilentMode = true
2 To see the changed property value, type:

canch1.SilentMode

ans =

 1

See Also

Related Examples
• “Transmit and Receive CAN Messages” on page 1-8

 Configure Silent Mode

1-23

Hardware Support Package Installation

2

Install Hardware Support Package for Device Driver
In this section...
“Install Support Packages” on page 2-2
“Update or Uninstall Support Packages” on page 2-2

To communicate with a CAN device, you must install the required driver on your system.

The drivers are available in the support packages for the following vendors:

• National Instruments (NI-XNET CAN)
• Kvaser
• Vector
• PEAK-System

Note For deployed applications, the target machine also needs the appropriate drivers installed. If
the target machine does not have MATLAB on it, you must install the vendor drivers manually.

Install Support Packages
To install the support package for the required driver:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the left pane of the Add-On Explorer, scroll to Filter by Type and check Hardware Support
Packages.

3 Under Filter by Hardware Type check CAN Devices. The Add-On Explorer displays all the
support packages for the supported vendors of CAN devices. Click the support package for your
device vendor.

4 Click Install > Install. Sign in to your MathWorks® account if necessary, and proceed.

Update or Uninstall Support Packages
To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for Updates >
Hardware Support Packages.

See Also

More About
• “Get and Manage Add-Ons” (MATLAB)

2 Hardware Support Package Installation

2-2

• “Vendor Limitations”

 Install Hardware Support Package for Device Driver

2-3

CAN Communication Workflows

• “CAN Transmit Workflow” on page 3-2
• “CAN Receive Workflow” on page 3-3

3

CAN Transmit Workflow
This workflow helps you create a CAN channel and transmit messages.

See Also
Functions
canChannel | canDatabase | canMessage | canMessageImport | configBusSpeed | pack |
start | stop | transmit | transmitConfiguration | transmitEvent | transmitPeriodic

Properties
Data | Database | Error | Extended | ID | Name | Remote | Signals | Timestamp | UserData

Blocks
CAN Pack | CAN Replay | CAN Transmit

3 CAN Communication Workflows

3-2

CAN Receive Workflow
Use this workflow to receive and unpack CAN messages.

See Also
Functions
attachDatabase | canDatabase | configBusspeed | extractAll | extractRecent |
extractTime | receive | stop | unpack

Properties
MessageReceivedFcn | MessageReceivedFcnCount | MessagesAvailable | MessagesReceived |
MessagesTransmitted | ReceiveErrorCount | TransmitErrorCount

Blocks
CAN Log | CAN Receive | CAN Unpack

 CAN Receive Workflow

3-3

Using a CAN Database

• “Load .dbc Files and Create Messages” on page 4-2
• “View Message Information in a CAN Database” on page 4-13
• “View Signal Information in a CAN Message” on page 4-15
• “Attach a CAN Database to Existing Messages” on page 4-16

4

Load .dbc Files and Create Messages
In this section...
“Vector CAN Database Support” on page 4-2
“Load the CAN Database” on page 4-2
“Create a CAN Message” on page 4-2
“Access Signals in the Constructed CAN Message” on page 4-3
“Add a Database to a CAN Channel” on page 4-3
“Update Database Information” on page 4-3
“Create and Process Messages Using Database Definitions” on page 4-3

Vector CAN Database Support
Vehicle Network Toolbox allows you to use a Vector CAN database. The database .dbc file contains
definitions of CAN messages and signals. Using the information defined in the database file, you can
look up message and signal information, and build messages. You can also represent message and
signal information in engineering units so that you do not need to manipulate raw data bytes.

Load the CAN Database
To use a CAN database file, load the database into your MATLAB session. At the MATLAB command
prompt, type:

db = canDatabase('filename.dbc')

Here db is a variable you chose for your database handle and filename.dbc is the actual file name
of your CAN database. If your CAN database is not in the current working directory, type the path to
the database:

db = canDatabase('path\filename.dbc')

Tip CAN database file names containing non-alphanumeric characters such as equal signs,
ampersands, and so forth are incompatible with Vehicle Network Toolbox. You can use periods in your
database name. Rename any CAN database files with non-alphanumeric characters before you use
them.

This command returns a database object that you can use to create and interpret CAN messages
using information stored in the database. Refer to the canDatabase function for more information.

Create a CAN Message
This example shows you how to create a message using a database constructed specifically for this
example. You can access this database in the Toolbox > VNT > VNTDemos subfolder in your
MATLAB installation folder. This database has a message, EngineMsg. To try this example, create
messages and signals using definitions in your own database.

1 Create the CAN database object.

4 Using a CAN Database

4-2

cd ([matlabroot '\examples\vnt'])
d = canDatabase('demoVNT_CANdbFiles.dbc');

2 Create a CAN message using the message name in the database.

message = canMessage(d,'EngineMsg');

Access Signals in the Constructed CAN Message
You can access the two signals defined for the message you created in the example database,
message. You can also change the values for some signals.

1 To display signals in your message, type:

sig = message.Signals

sig =

 struct with fields:

 VehicleSpeed: 0
 EngineRPM: 250

2 Change the value of the EngineRPM signal:

message.Signals.EngineRPM = 300;
3 Reassign the signals and display them again to see the change.

sig = message.Signals

sig =

 struct with fields:

 VehicleSpeed: 0
 EngineRPM: 300

Add a Database to a CAN Channel
To add a database to the CAN channel canch, type:

canch.Database = canDatabase('Mux.dbc')

For more information, see the Database property.

Update Database Information
When you make changes to a database file:

1 Reload the database file into your MATLAB session using the canDatabase function.
2 Reattach the database to messages using the attachDatabase function.

Create and Process Messages Using Database Definitions
This example shows you how to create, receive and process messages using information stored in
CAN database files. This example uses the CAN database file, demoVNT_CANdbFiles.dbc.

 Load .dbc Files and Create Messages

4-3

Open the Database File

Open the database file and examine the Messages property to see the names of all message defined
in this database.

db = canDatabase('demoVNT_CANdbFiles.dbc')
db.Messages

db =

 Database with properties:

 Name: 'demoVNT_CANdbFiles'
 Path: 'C:\TEMP\Bdoc20a_1326390_8984\ib9D0363\5\tpadf0f339\ex80654288\demoVNT_CANdbFiles.dbc'
 Nodes: {}
 NodeInfo: [0x0 struct]
 Messages: {5x1 cell}
 MessageInfo: [5x1 struct]
 Attributes: {}
 AttributeInfo: [0x0 struct]
 UserData: []

ans =

 5x1 cell array

 {'DoorControlMsg' }
 {'EngineMsg' }
 {'SunroofControlMsg'}
 {'TransmissionMsg' }
 {'WindowControlMsg' }

View Message Information

Use messageInfo to view message information, including the identifier, data length, and a signal
list.

messageInfo(db, 'EngineMsg')

ans =

 struct with fields:

 Name: 'EngineMsg'
 ProtocolMode: 'CAN'
 Comment: ''
 ID: 100
 Extended: 0
 J1939: []
 Length: 8
 DLC: 8
 BRS: 0
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]

4 Using a CAN Database

4-4

 TxNodes: {0x1 cell}
 Attributes: {}
 AttributeInfo: [0x0 struct]

You can also query for information on all messages at once.

messageInfo(db)

ans =

 5x1 struct array with fields:

 Name
 ProtocolMode
 Comment
 ID
 Extended
 J1939
 Length
 DLC
 BRS
 Signals
 SignalInfo
 TxNodes
 Attributes
 AttributeInfo

View Signal Information

Use signalInfo to view signal definition information, including type, byte ordering, size, and
scaling values that translate raw signals to physical values.

signalInfo(db, 'EngineMsg', 'EngineRPM')

ans =

 struct with fields:

 Name: 'EngineRPM'
 Comment: ''
 StartBit: 0
 SignalSize: 32
 ByteOrder: 'LittleEndian'
 Signed: 0
 ValueType: 'Integer'
 Class: 'uint32'
 Factor: 0.1000
 Offset: 250
 Minimum: 250
 Maximum: 9500
 Units: 'rpm'
 ValueTable: [0x1 struct]
 Multiplexor: 0
 Multiplexed: 0
 MultiplexMode: 0

 Load .dbc Files and Create Messages

4-5

 RxNodes: {0x1 cell}
 Attributes: {}
 AttributeInfo: [0x0 struct]

You can also query for information on all signals in the message at once.

signalInfo(db, 'EngineMsg')

ans =

 2x1 struct array with fields:

 Name
 Comment
 StartBit
 SignalSize
 ByteOrder
 Signed
 ValueType
 Class
 Factor
 Offset
 Minimum
 Maximum
 Units
 ValueTable
 Multiplexor
 Multiplexed
 MultiplexMode
 RxNodes
 Attributes
 AttributeInfo

Create a Message Using Database Definitions

Specify the name of the message when you create a new message to have the database definition
applied. CAN signals in this messages are represented in engineering units in addition to the raw
data bytes.

msgEngineInfo = canMessage(db, 'EngineMsg')

msgEngineInfo =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]

4 Using a CAN Database

4-6

 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

View Signal Information

Use the Signals property to see signal values for this message. You can directly write to and read
from these signals to pack or unpack data from the message.

msgEngineInfo.Signals

ans =

 struct with fields:

 VehicleSpeed: 0
 EngineRPM: 250

Change Signal Information

Write directly to the signal to change a value and read its current value back.

msgEngineInfo.Signals.EngineRPM = 5500.25
msgEngineInfo.Signals

msgEngineInfo =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [23 205 0 0 0 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

 Load .dbc Files and Create Messages

4-7

ans =

 struct with fields:

 VehicleSpeed: 0
 EngineRPM: 5.5003e+03

When you write directly to the signal, the value is translated, scaled, and packed into the message
data using the database definition.

msgEngineInfo.Signals.VehicleSpeed = 70.81
msgEngineInfo.Signals

msgEngineInfo =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [23 205 0 0 71 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

ans =

 struct with fields:

 VehicleSpeed: 71
 EngineRPM: 5.5003e+03

Receive Messages with Database Information

Attach a database to a CAN channel that receives messages to apply database definitions to incoming
messages automatically. The database decodes only messages that are defined. All other messages
are received in their raw form.

rxCh = canChannel('MathWorks', 'Virtual 1', 2);
rxCh.Database = db

4 Using a CAN Database

4-8

rxCh =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: [1x1 can.Database]
 UserData: []

Receive Messages

Start the channel, generate some message traffic and receive messages with physical message
decoding.

start(rxCh);
generateMsgsDb();
rxMsg = receive(rxCh, Inf, 'OutputFormat', 'timetable');
rxMsg(1:15, :)

ans =

 15x8 timetable

 Time ID Extended Name Data Length Signals Error Remote
 _____________ ___ ________ _____________________ ___________ ______ ____________ _____ ______

 0.0063559 sec 100 false {'EngineMsg' } {1x8 uint8} 8 {1x1 struct} false false

 Load .dbc Files and Create Messages

4-9

 0.0063645 sec 200 false {'TransmissionMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.0063668 sec 400 false {'DoorControlMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.006369 sec 600 false {'WindowControlMsg' } {1x4 uint8} 4 {1x1 struct} false false
 0.0063722 sec 800 false {'SunroofControlMsg'} {1x2 uint8} 2 {1x1 struct} false false
 0.024134 sec 100 false {'EngineMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.049119 sec 100 false {'EngineMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.049127 sec 200 false {'TransmissionMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.074109 sec 100 false {'EngineMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.099096 sec 100 false {'EngineMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.099103 sec 200 false {'TransmissionMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.12408 sec 100 false {'EngineMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.12409 sec 400 false {'DoorControlMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.14813 sec 100 false {'EngineMsg' } {1x8 uint8} 8 {1x1 struct} false false
 0.14814 sec 200 false {'TransmissionMsg' } {1x8 uint8} 8 {1x1 struct} false false

Stop the channel and clear it from the workspace.

stop(rxCh);
clear rxCh

Examine a Received Message

Inspect a received message to see the applied database decoding.

rxMsg(10, :)
rxMsg.Signals{10}

ans =

 1x8 timetable

 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _____________ ___________ ______ ____________ _____ ______

 0.099096 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false

ans =

 struct with fields:

 VehicleSpeed: 50
 EngineRPM: 3.5696e+03

Extract All Instances of a Specified Message

Use MATLAB notation to extract all instances of a specified message by name.

allMsgEngine = rxMsg(strcmpi('EngineMsg', rxMsg.Name), :);
allMsgEngine(1:15, :)

ans =

 15x8 timetable

4 Using a CAN Database

4-10

 Time ID Extended Name Data Length Signals Error Remote
 _____________ ___ ________ _____________ ___________ ______ ____________ _____ ______

 0.0063559 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.024134 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.049119 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.074109 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.099096 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.12408 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.14813 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.17407 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.19907 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.22404 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.24906 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.27403 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.299 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.32399 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false
 0.34898 sec 100 false {'EngineMsg'} {1x8 uint8} 8 {1x1 struct} false false

Plot Physical Signal Values

Plot the values of database decoded signals over time. Reference the message timestamps and the
signal values in variables.

signalTimetable = canSignalTimetable(rxMsg, 'EngineMsg');
signalTimetable(1:15, :)
plot(signalTimetable.Time, signalTimetable.VehicleSpeed)
title('Vehicle Speed from EngineMsg', 'FontWeight', 'bold')
xlabel('Timestamp')
ylabel('Vehicle Speed')

ans =

 15x2 timetable

 Time VehicleSpeed EngineRPM
 _____________ ____________ _________

 0.0063559 sec 0 250
 0.024134 sec 0 250
 0.049119 sec 50 3569.6
 0.074109 sec 50 3569.6
 0.099096 sec 50 3569.6
 0.12408 sec 50 3569.6
 0.14813 sec 50 3569.6
 0.17407 sec 55 3621.3
 0.19907 sec 55 3621.3
 0.22404 sec 55 3621.3
 0.24906 sec 55 3621.3
 0.27403 sec 55 3663.9
 0.299 sec 55 3663.9
 0.32399 sec 55 3663.9
 0.34898 sec 55 3663.9

 Load .dbc Files and Create Messages

4-11

See Also

More About
• “View Message Information in a CAN Database” on page 4-13
• “View Signal Information in a CAN Message” on page 4-15
• “Attach a CAN Database to Existing Messages” on page 4-16

4 Using a CAN Database

4-12

View Message Information in a CAN Database
You can look up information on message definitions by a single message by name, or a single message
by ID. You can also look up information on all message definitions in the database by typing:

msgInfo = messageInfo(database name)

This returns the message structure of information about messages in the database. For example:

msgInfo = messageInfo(db)

msgInfo =

5x1 struct array with fields:
 Name
 Comment
 ID
 Extended
 Length
 Signals

To get information on a single message by message name, type:

msgInfo = messageInfo(database name,'message name')

This returns information about the message as defined in the database. For example:

msgInfo = messageInfo(db,'EngineMsg')

msgInfo =

 Name: 'EngineMsg'
 Comment: ''
 ID: 100
 Extended: 0
 Length: 8
 Signals: {2x1 cell}

Here the function returns information about message with name EngineMsg in the database db. You
can also use the message ID to get information about a message. For example, to view the example
message given here by inputting the message ID, type:

msgInfo = messageInfo(db,100,false)

This command provides the database name, the message ID, and a Boolean value for the extended
value of the ID.

See Also
Functions
messageInfo

More About
• “Load .dbc Files and Create Messages” on page 4-2

 View Message Information in a CAN Database

4-13

• “View Signal Information in a CAN Message” on page 4-15
• “Attach a CAN Database to Existing Messages” on page 4-16

4 Using a CAN Database

4-14

View Signal Information in a CAN Message
You can get signal definition information on a specific signal or all signals in a CAN message with
database definitions attached. Provide the message name or the ID as a parameter in the command:

sigInfo = signalInfo(db, 'EngineMsg')

You can also get information about a specific signal by providing the signal name:

sigInfo = signalInfo(db, 'EngineMsg', 'EngineRPM')

To learn how to use this property and work with the database, see the signalInfo function.

You can also access the Signals property of the message to view physical signal information. When
you create physical signals using database information, you can directly write to and read from these
signals to pack or unpack data from the message. When you write directly to the signal name, the
value is translated, scaled, and packed into the message data.

See Also
Functions
signalInfo

More About
• “Load .dbc Files and Create Messages” on page 4-2
• “View Message Information in a CAN Database” on page 4-13
• “Attach a CAN Database to Existing Messages” on page 4-16

 View Signal Information in a CAN Message

4-15

Attach a CAN Database to Existing Messages
You can attach a .dbc file to messages and apply the message definition defined in the database.
Attaching a database allows you to view the messages in their physical form and use a signal-based
interaction with the message data.

To attach a database to a message, type:

 attachDatabase(message name, database name)

Note If your message is an array, all messages in the array are associated with the database that you
attach.

You can also dissociate a message from a database so that you can view the message in its raw form.
To clear the attached database from a message, type:

 attachDatabase(message name, [])

Note The database gets attached even if the database does not find the specified message. Even
though the database is still attached to the message, the message is displayed in its raw mode.

See Also
Functions
attachDatabase

More About
• “Load .dbc Files and Create Messages” on page 4-2
• “View Message Information in a CAN Database” on page 4-13
• “View Signal Information in a CAN Message” on page 4-15

4 Using a CAN Database

4-16

Monitoring Vehicle CAN Bus

• “Vehicle CAN Bus Monitor” on page 5-2
• “Using the Vehicle CAN Bus Monitor” on page 5-7

5

Vehicle CAN Bus Monitor
In this section...
“About the Vehicle CAN Bus Monitor” on page 5-2
“Opening the Vehicle CAN Bus Monitor” on page 5-2
“Vehicle CAN Bus Monitor Fields” on page 5-2

About the Vehicle CAN Bus Monitor
Vehicle Network Toolbox provides a graphical user interface that monitors CAN bus traffic on
selected channels. Using the CAN Bus Monitor you can:

• View live CAN message data.
• Configure connection to the CAN bus.
• View unique messages.
• Attach a database to view signal information.
• Save the messages to a log file.

You cannot programmatically configure the Vehicle CAN Bus Monitor. However, you can use it to
independently visualize bus traffic generated on CAN channels by MATLAB or Simulink CAN blocks.

Opening the Vehicle CAN Bus Monitor
To open the Vehicle CAN Bus Monitor, type canTool in the MATLAB Command Window.

Vehicle CAN Bus Monitor Fields
The CAN bus monitor has the following menus, buttons and table.

5 Monitoring Vehicle CAN Bus

5-2

File Menu

• Save Messages — Saves messages to a log file.
• Clear Messages — Clears messages in the Vehicle CAN Bus Monitor window.
• Exit — Click to exit the Vehicle CAN Bus Monitor.

Configure Menu

• Channel — Displays all available CAN devices and channels on your system. Select the CAN
channel to monitor.

• Bus Speed — Opens the Specified bus speed dialog box. To change the bus speed of the selected
channel, type the new value in bits per second in the box.

 Vehicle CAN Bus Monitor

5-3

• Message Filters — Opens the Set Message Filters dialog box. Select an option in the dialog box
to configure hardware filters to block or allow messages.

• Standard Message ID Filter

• Allow All — Select to allow all standard ID messages.
• Block All — Select to block all standard ID messages.
• Allow only — Select to set up custom filtering of messages. Type the standard message IDs

that you want to allow.
• Extended Message ID Filter

• Allow All — Select to allow all extended ID messages.
• Block All — Select to block all extended ID messages.
• Allow only — Select to set up custom filtering of messages. Type the extended message IDs

that you want to allow.
• Database — Selects the database to attach to the CAN messages on the selected channel.

Run Menu

• Start — Click to view message activity on the selected channel.
• Pause — Click to pause the display of message activity on the selected channel.
• Stop — Click to stop the display of message activity on the selected channel.

5 Monitoring Vehicle CAN Bus

5-4

View Menu

• Maximum message count — Opens the Specify maximum message count dialog box. To change
the maximum number of messages displayed at a time in the Vehicle CAN Bus Monitor, type the
new value in the box.

• Number Format — Select the number format to display message identifier data. Choose
Hexadecimal or Decimal.

• Show Unique Messages — Select this option to display the most recent instance of each
message received on the selected channel. If you select this option, the tool displays a simplified
version of the message traffic. In this view, messages do not scroll up, but each message refreshes
its data with each timestamp. If you do not select this option, the tool displays all instances of all
messages in the order that the selected channel receives them.

Help Menu

• Documentation — Select this option to see the documentation for the Vehicle CAN Bus Monitor.
• About Vehicle Network Toolbox — Select this option to view the toolbox version and release

information.

Buttons

Start
Displays message activity on the selected channel.

Pause
Pauses the display of message activity on the selected channel.

Stop
Stops displaying messages on the selected channel.

Save messages
Click this button to save the current message list on the selected channel to a file.

Clear messages
Click this button to clear messages in the Vehicle CAN Bus Monitor window.

Show unique messages
Select this option to display the most recent instance of each message received on the selected
channel. If you select this option, the tool displays a simplified version of the message traffic. In
this view, messages do not scroll up, but each message refreshes its data with each timestamp. If

 Vehicle CAN Bus Monitor

5-5

you do not select this option the tool displays all instances of all messages in the order that the
selected channel receives them.

Docking
Click this button to dock the Vehicle CAN Bus Monitor to the MATLAB desktop. To undock, click

.

Undocking
Click this button to undock the Vehicle CAN Bus Monitor from the MATLAB desktop. To dock,
click .

Message Table

Timestamp
Displays the time, relative to the start time, that the device receives the message. The start time
begins at 0 when you click Start.

ID
Displays the message ID. This field displays a number in hexadecimal format for the ID and:

• Displays numbers only for standard IDs.
• Appends an x for an extended ID.
• Displays an r for a remote frame.
• Displays error for messages with error frames.

To change the format to decimal, select View > Number Format > Decimal.
Name

Displays the name of the message, if available.
Length

Displays the length of the message in bytes.
Data

Displays the data in the message in hexadecimal format.

To change the format to decimal, select View > Number Format > Decimal.

If you are using a database on page 5-8, click the + sign to see signal information. The tool displays
the signal name and the physical value of the message, as defined in the attached database.

See Also

More About
• “Using the Vehicle CAN Bus Monitor” on page 5-7

5 Monitoring Vehicle CAN Bus

5-6

Using the Vehicle CAN Bus Monitor
This topic shows many of the tasks you can perform with the Vehicle CAN Bus Monitor.

In this section...
“View Messages on a Channel” on page 5-7
“Configure the Channel Bus Speed” on page 5-7
“Filter CAN Messages in Vehicle CAN Bus Monitor” on page 5-7
“Attach a Database” on page 5-8
“Change the Message Count” on page 5-10
“Change the Number Format” on page 5-10
“View Unique Messages” on page 5-10
“Save the Message Log File” on page 5-10

View Messages on a Channel
1 Open the Vehicle CAN Bus Monitor and select the device and channel connected to your CAN bus

by selecting Configure > Channel.
2 The Vehicle CAN Bus Monitor defaults to the bus speed set in the device driver. You can also

configure a new bus speed. See Configuring the Channel Bus Speed on page 5-7
3 Click Start, or select Run > Start.
4 To pause the display, click Pause or select Run > Pause.
5 To stop the display, click Stop or select Run > Stop.

Configure the Channel Bus Speed
Configure the bus speed when your network speed differs from the default value of the channel. You
require initialization access for the channel to configure the bus speed.

To configure a new bus speed:

1 Select Configure > Bus Speed.
2 Type the desired value in the Specify bus speed dialog box.
3 Click OK.

The value you set takes effect once you start the CAN channel. If an error occurs when applying the
new bus speed, the value reverts to the default value specified in the hardware.

Filter CAN Messages in Vehicle CAN Bus Monitor
Filter CAN messages to allow or block messages displayed in the Vehicle CAN Bus Monitor.

To set up filters:

1 Select Configure > Message Filters.
2 To set filters on standard message IDs, select:

 Using the Vehicle CAN Bus Monitor

5-7

a Allow All to set the hardware filter to allow all messages with standard IDs.
b Block All to set the hardware filter to block all messages with standard IDs.
c Allow Only to set up custom filters. Type the standard IDs of the message you want to filter.

You can type a range or single IDs. The default is 0:2047.
3 To set filters on extended message IDs, select:

a Allow All to set the hardware filter to allow all messages extended IDs.
b Block All to set the hardware filter to block all messages extended IDs.
c Allow Only to set up custom filters. Type the extended IDs of the message you want to filter.

You can type a range or single IDs. The default is 0:536870911.

Note If you are using a custom filter, change the default range to the desired range. The
default range allows all messages and you should select Allow All to allow all incoming
messages with extended IDs.

4 Click OK.

Attach a Database
Attach a database to the Vehicle CAN Bus Monitor to see signal information of the displayed
messages.

1 Select Run > Stop to stop the message display in the Vehicle CAN Bus Monitor.
2 Select Configure > Database.
3 Select the database to attach and start the message display again.

When the tool displays the messages, it shows the message name in the Message table.

5 Monitoring Vehicle CAN Bus

5-8

4 Click the plus (+) sign to see the details of the message.

The tool displays the signal name as defined in the attached database and the signal's physical value.

 Using the Vehicle CAN Bus Monitor

5-9

Change the Message Count
You can change the maximum number of messages displayed to a value from 100 through 5000.

1 Select View > Maximum Message Count.
2 In the Specify maximum message count dialog box, type the number of messages you want

displayed at one time.
3 Click OK.

Change the Number Format
By default the message data is displayed in hexadecimal format. To change the display to decimal
format, select View > Number Format > Decimal.

View Unique Messages
To view the most recent instance of each unique message received on the channel, select View >
Show Unique Messages. In this view, you do not see messages scroll up, but each message

refreshes its data and timestamp with each new instance. You can also click .

Use this feature to get a snapshot of message IDs that the selected channel receives. Use this
information to analyze specific messages.

When you select Show Unique Messages, the tool continues to receive message actively. This
simplified view allows you to focus on specific messages and analyze them.

To save messages when Show Unique Messages is selected, click Pause and then click Save. You
cannot save just the unique message list. This operation saves the complete message log in the
window.

Save the Message Log File
You can save a log file of the messages currently displayed. If running, you need to stop or pause the
display before saving a log file.

To save a log file of the messages currently displayed in the window, select File > Save Messages or

click .

5 Monitoring Vehicle CAN Bus

5-10

The tool saves the messages in a MATLAB file in your current working folder by default. You can
change the location by browsing to a different folder in the Save dialog box.

Each time you save the message log to a file, the Vehicle CAN Bus Monitor saves them as VNT CAN
Log.mat with sequential numbering by default. You can change the name by typing a new name in
Save dialog box.

See Also

More About
• “Vehicle CAN Bus Monitor” on page 5-2

 Using the Vehicle CAN Bus Monitor

5-11

XCP Communication Workflows

6

XCP Database and Communication Workflow
This workflow helps you:

• Manage an A2L database
• Connect to an XCP device
• Create an XCP channel
• Acquire and stimulate data
• Read and write to memory

6 XCP Communication Workflows

6-2

 XCP Database and Communication Workflow

6-3

See Also
Functions
connect | createMeasurementList | disconnect | freeMeasurementLists | getEventInfo |
getMeasurementInfo | isConnected | isMeasurementRunning | readDAQListData |
readSingleValue | startMeasurement | stopMeasurement | viewMeasurementLists |
writeSTIMListData | writeSingleValue | xcpA2L | xcpChannel

Properties
A2LFileName | A2LFileName | DAQInfo | Events | FileName | FilePath | Measurements |
ProtocolLayerInfo | SeedKeyDLL | SeedKeyDLL | SlaveName | SlaveName | SlaveName |
TransportLayer | TransportLayer | TransportLayerCANInfo | TransportLayerDevice |
TransportLayerDevice

Blocks
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN
Transport Layer | XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

6 XCP Communication Workflows

6-4

A2L File

7

Inspect the Contents of an A2L File
In this section...
“Access an A2L File” on page 7-2
“Access Measurement Information” on page 7-2
“Access Event Information” on page 7-3

Access an A2L File
To use an A2L file, create a file object in your MATLAB session. At the Command Window prompt,
type:

a2lfile = xcpA2L('filename.a2l')

Here a2lfile is a variable assigned with the A2L object, and filename.a2l is the name of your
A2L file. If your A2L file is not in the current working directory, specify the necessary partial or full
path to the file:

a2lfile = xcpA2L('path\filename.a2l');

Tip A2L file names containing non-alphanumeric characters such as equal signs or ampersands are
not supported. You can use periods in your database name. Rename any A2L files with non-
alphanumeric characters before you use them.

This command returns an A2L object that you can use for live communication with a slave module
using XCP channels.

Access Measurement Information
This example shows how to open an A2L file and access measurement information.

Open an A2L file:

a2lfile = xcpA2L('XCPSIM.a2l');

Display properties of the A2L object:

a2lfile

 A2L with properties:

 FileName: 'XCPSIM.a2l'
 FilePath: 'C:\work\XCPSIM.a2l'
 SlaveName: 'CPP'
 ProtocolLayerInfo: [1×1 xcp.ProtocolLayerInfo]
 DAQInfo: [1×1 xcp.DAQInfo]
 TransportLayerCANInfo: [1×1 xcp.TransportLayerCANInfo]
 TransportLayerUDPInfo: [1×1 xcp.TransportLayerUDPInfo]
 TransportLayerTCPInfo: []
 Events: {'Key T' '10 ms' '100ms' '1ms' 'FilterBypassDaq' 'FilterBypassSt'}
 Measurements: {1×45 cell}
 Characteristics: {1×16 cell}
 EventInfo: [1×6 xcp.Event]
 MeasurementInfo: [45×1 containers.Map]
 CharacteristicInfo: [16×1 containers.Map]
 AxisInfo: [1×1 containers.Map]

7 A2L File

7-2

 RecordLayouts: [41×1 containers.Map]
 CompuMethods: [16×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [2×1 containers.Map]

View all available measurements:

a2lfile.Measurements

ans =

 1×45 cell array

 Columns 1 through 6

 {'BitSlice'} {'BitSlice0'} {'BitSlice1'} {'BitSlice2'} {'Counter_B4'} {'Counter_B5'}

 Columns 7 through 12

 {'Counter_B6'} {'Counter_B7'} {'DtChannel1'} {'FW1'} {'KL1Output'} {'MaxChannel1'}

 Columns 13 through 18

 {'MinChannel1'} {'PWM'} {'PWMFiltered'} {'PWM_Level'} {'ShiftByte'} {'Shifter_B0'}

 Columns 19 through 24

 {'Shifter_B1'} {'Shifter_B2'} {'Shifter_B3'} {'TestStatus'} {'Triangle'} {'ampl'}

 Columns 25 through 31

 {'bit12Counter'} {'byte1'} {'byte2'} {'byte3'} {'byte4'} {'byteCounter'} {'bytePWMFilter'}

 Columns 32 through 37

 {'channel1'} {'channel2'} {'channel3'} {'dwordCounter'} {'limit'} {'map1InputX'}

 Columns 38 through 44

 {'map1InputY'} {'map1Output'} {'offset'} {'period'} {'sbytePWMLevel'} {'v'} {'vin'}

 Column 45

 {'wordCounter'}

Get information about the 'Triangle' measurement:

getMeasurementInfo(a2lfile,'Triangle')

ans =

 Measurement with properties:

 Resolution: 0
 Accuracy: 0
 LocDataType: 'SBYTE'
 Layout: 'ROW_DIR'
 Name: 'Triangle'
 LongIdentifier: 'Triangle test signal used for PWM output PWM'
 ECUAddress: 4951377
 ECUAddressExtension: 0
 Conversion: [1×1 xcp.CompuMethodRational]
 Dimension: 1
 LowerLimit: -50
 UpperLimit: 50
 BitMask: []

Access Event Information
This example shows how to open an A2L file and access event information.

 Inspect the Contents of an A2L File

7-3

Open an A2L file:

a2lfile = xcpA2L('XCPSIM.a2l');

Display properties of the A2L object:

a2lfile

 A2L with properties:

 FileName: 'XCPSIM.a2l'
 FilePath: 'C:\work\XCPSIM.a2l'
 SlaveName: 'CPP'
 ProtocolLayerInfo: [1×1 xcp.ProtocolLayerInfo]
 DAQInfo: [1×1 xcp.DAQInfo]
 TransportLayerCANInfo: [1×1 xcp.TransportLayerCANInfo]
 TransportLayerUDPInfo: [1×1 xcp.TransportLayerUDPInfo]
 TransportLayerTCPInfo: []
 Events: {'Key T' '10 ms' '100ms' '1ms' 'FilterBypassDaq' 'FilterBypassSt'}
 Measurements: {1×45 cell}
 Characteristics: {1×16 cell}
 EventInfo: [1×6 xcp.Event]
 MeasurementInfo: [45×1 containers.Map]
 CharacteristicInfo: [16×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [41×1 containers.Map]
 CompuMethods: [16×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [2×1 containers.Map]

View all available events:

a2lfile.Events

ans =

 'Key T' '10 ms' '100ms' '1ms' 'FilterBypassDaq' 'FilterBypassSt'

Get information for the '10 ms' event:

 getEventInfo(a2lfile,'10 ms')

ans =

 Name: '10 ms'
 Direction: 'DAQ_STIM'
 MaxDAQList: 255
 ChannelNumber: 1
 ChannelTimeCycle: 10
 ChannelTimeUnit: 6
 ChannelPriority: 0
 ChannelTimeCycleInSeconds: 0.0100

See Also
Functions
getEventInfo | getMeasurementInfo | xcpA2L

7 A2L File

7-4

Universal Measurement & Calibration
Protocol (XCP)

• “XCP Hardware Connection” on page 8-2
• “Read a Single Value” on page 8-6
• “Write a Single Value” on page 8-7
• “Read a Calibrated Measurement” on page 8-8
• “Acquire Measurement Data via Dynamic DAQ Lists” on page 8-9
• “Stimulate Measurement Data via Dynamic STIM Lists” on page 8-10

8

XCP Hardware Connection
You can connect your XCP master to a slave module using the CAN protocol. This allows you to use
events and access measurements on the slave module.

8 Universal Measurement & Calibration Protocol (XCP)

8-2

 XCP Hardware Connection

8-3

Create XCP Channel Using CAN Device
This example shows how to create an XCP CAN channel connection and access channel properties.
The example also shows how to unlock the slave using seed key security.

Access an A2L file that describes the slave module.

 a2lfile = xcpA2L('C:\work\XCPSIM.a2l')

a2lfile =

 A2L with properties:

 FileName: 'XCPSIM.a2l'
 FilePath: 'C:\work\XCPSIM.a2l'
 SlaveName: 'CPP'
 ProtocolLayerInfo: [1×1 xcp.ProtocolLayerInfo]
 DAQInfo: [1×1 xcp.DAQInfo]
 TransportLayerCANInfo: [1×1 xcp.TransportLayerCANInfo]
 TransportLayerUDPInfo: [1×1 xcp.TransportLayerUDPInfo]
 TransportLayerTCPInfo: []
 Events: {'Key T' '10 ms' '100ms' '1ms' 'FilterBypassDaq' 'FilterBypassSt'}
 Measurements: {1×45 cell}
 Characteristics: {1×16 cell}
 EventInfo: [1×6 xcp.Event]
 MeasurementInfo: [45×1 containers.Map]
 CharacteristicInfo: [16×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [41×1 containers.Map]
 CompuMethods: [16×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [2×1 containers.Map]

Create an XCP channel using Vector virtual CAN channel 1.

xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1)

xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: []

Configure the Channel to Unlock the Slave
This example shows how to configure the channel to unlock the slave using a dll that contains a seed
and key security algorithm when your module is locked for Stimulation operations.

Create your XCP channel and set the channel SeedKeyDLL property.

 xcpch.SeedKeyDLL = ('C:\work\SeedNKeyXcp.dll')

xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'

8 Universal Measurement & Calibration Protocol (XCP)

8-4

 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: 'C:\work\SeedNKeyXcp.dll'

 XCP Hardware Connection

8-5

Read a Single Value
This example shows how to access a single value by name. The value is read directly from memory.

Create an XCP channel with access to an A2L file.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the slave.

connect(xcpch)

Read a single value of the Triangle measurement directly from memory.

readSingleValue(xcpch,'Triangle')

ans =

 50

8 Universal Measurement & Calibration Protocol (XCP)

8-6

Write a Single Value
This example shows how to write a single value by name. The value is written directly to memory.

Create an XCP channel linked to an A2L file.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the slave.

connect(xcpch)

Write a single value.

writeSingleValue(xcpch,'Triangle',50)

 Write a Single Value

8-7

Read a Calibrated Measurement
This example shows a typical workflow for reading a calibration file and using a translation table to
calibrate a measurement reading.

Read the engine management ECU calibration file.

a2lobj = xcpA2L('ems.a2l');

Connect to the ECU.

ch = xcpChannel(a2lobj,'UDP','192.168.1.55',5555);

Set the table that translates a pedal position to a torque demand.

writeCharacteric(ch,'tq_accel_request', ...
[0 2 4 9 14 24 48 72 96 144 192 204 216 228 240]);

Set the pedal position to 50%.

writeMeasurement(ch,'pedal_position',50);

Read the demand.

value = readMeasurement(ch,'tq_demand')

value =
 96

See Also
Functions
readAxis | readCharacteristic | readMeasurement | writeAxis | writeCharacteristic |
writeMeasurement

8 Universal Measurement & Calibration Protocol (XCP)

8-8

Acquire Measurement Data via Dynamic DAQ Lists
This example shows how to can create a dynamic data acquisition list and assign measurements to
the list. You can acquire data for measurements in this list from the slave.

Create an XCP channel linked to an A2L file and connect it to the slave.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);
connect(xcpch)

Create a DAQ list for the '10 ms' event with 'PWMFiltered' and 'Triangle' measurements.
createMeasurementList(xcpch,'DAQ','10 ms',{'PWMFiltered','Triangle'});

Start measurement activity.

startMeasurement(xcpch)

Read 10 samples of data from the configured measurement list for the 'Triangle' measurement.

readDAQListData(xcpch,'Triangle', 10)

18 18 18 18 18 18 18 18 18 18

 Acquire Measurement Data via Dynamic DAQ Lists

8-9

Stimulate Measurement Data via Dynamic STIM Lists
This example shows how to can create a dynamic data stimulation list and assign measurements to
the list. You can stimulate data for specific measurements in this list.

Create an XCP channel linked to an A2L file and connect it.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile, 'CAN','Vector','Virtual 1',1);
connect(xcpch)

Note If your module is locked for STIM operations, configure the channel to unlock the slave.

Create a STIM list for the '100ms' event with 'PWMFiltered'and 'Triangle' measurements.
createMeasurementList(xcpch,'STIM','100ms',{'PWMFiltered','Triangle'});

Start the measurement.

startMeasurement(xcpch)

Write 10 to the configured measurement list for the 'Triangle' measurement.

writeSTIMListData(xcpch,'Triangle',10);

8 Universal Measurement & Calibration Protocol (XCP)

8-10

J1939

• “J1939 Interface” on page 9-2
• “J1939 Parameter Group Format” on page 9-3
• “J1939 Network Management” on page 9-4
• “J1939 Transport Protocols” on page 9-5
• “J1939 Channel Workflow” on page 9-6

9

J1939 Interface
J1939 is a high-level protocol built on the CAN bus that provides serial data communication between
electronic control units (ECUs) in heavy-duty vehicles. Applications of J1939 include:

• Diesel power-train applications
• In-vehicle networks for buses and trucks
• Agriculture and forestry machinery
• Truck-trailer connections
• Military vehicles
• Fleet management systems
• Recreational vehicles
• Marine navigation systems

The J1939 protocol uses CAN as the physical layer, which defines the communication between ECUs
in the vehicle network. The protocol has a second data-link layer that defines rules of communication
and error detection. A third application layer defines the data transferred over the network.

See Also

More About
• “J1939 Parameter Group Format” on page 9-3
• “J1939 Network Management” on page 9-4
• “J1939 Transport Protocols” on page 9-5
• “J1939 Channel Workflow” on page 9-6

9 J1939

9-2

J1939 Parameter Group Format
The application layer deals with parameter groups (PGs) sent and received over the network. J1939
protocol uses broadcast messages, or messages sent over the CAN bus without a defined destination.
Devices on the same network can access these messages without permission or special requests. If a
device requires a specific message, include the device destination address in the message identifier.

The message contains a group of parameters that define related messages. For example, a message
sent to the engine controller can contain both engine speed and RPM. These parameters are
represented in the CAN identifier by a parameter group number (PGN). Parameter groups use 29-bit
identifiers with this message structure:

Parameter Priority Reserved Data Page PDU Format PDU
Specific

Source
Address

Size 3 bits 1 bit 1 bit 8 bits 8 bits 8 bits

• First three bits represent the priority of the message on the network. Zero is the highest priority.
• The next bit is reserved for future use. For transmit messages, set this to zero.
• The next bit is the data page, which extends the maximum number of possible PGs in the
identifier.

• The next 8 bits are the protocol data unit (PDU) format, which specifies whether the message is
targeted for a single device or is broadcast. If the PDU is less than 240, then the message is sent
to a specific device and if it over 240, it is sent to the entire network.

• The next 8 bits are the PDU specific, which contains the address of the device when the PDU
format is less than 240. If PDU format is greater than 240, PDU specific contains group extension,
or the number of extended broadcast messages in this parameter group.

• The last 8 bits contain the source address, which is the address of the device sending the
parameter groups.

The protocol application layer transmits the PG on the CAN network. PG length can be up to 1785
bytes and is not limited by the length of a CAN message. However, PGs larger than 8 bytes must be
transmitted using a transport protocol.

See Also

More About
• “J1939 Interface” on page 9-2
• “J1939 Network Management” on page 9-4
• “J1939 Transport Protocols” on page 9-5
• “J1939 Channel Workflow” on page 9-6

 J1939 Parameter Group Format

9-3

J1939 Network Management
Each device on a J1939 network has a unique address. The PDU Specific uses device addresses to
send parameter groups (PG) to a specific device. Static addresses between zero and 253 are assigned
for every device on the network. You can also assign 254, which is a null and 255, which is a global
address.

Address Claiming
The application sending a PG must claim an ECU address. The application sends an address claiming
PG first, and resumes sending other PGs if there is not address conflict. If the source application
encounters an address conflict, it can send a PG to the global (255) address to request all devices to
declare their addresses. It can then claim one of the unused addresses.

See Also

More About
• “J1939 Interface” on page 9-2
• “J1939 Parameter Group Format” on page 9-3
• “J1939 Transport Protocols” on page 9-5
• “J1939 Channel Workflow” on page 9-6

9 J1939

9-4

J1939 Transport Protocols
J1939 transport protocol breaks up PGs larger than 8 data bytes and up to 1785 bytes, into multiple
packets. The transport protocol defines the rules for packaging, transmitting, and reassembling the
data.

• Messages that have multiple packets are transmitted with a dedicated PGN, and have the same
message ID and similar functionality.

• The length of each message in the packet must be 8 bytes or fewer.
• The first byte in the data field of a message specifies the sequence of the message (one to 255)

and the next seven bytes contain the original data.
• All unused bytes in the data field are set to zero.
• A different PGN controls the message flow.

The data package is passed to the application layer after it is reassembled in the order specified by
the first data-field byte.

See Also

More About
• “J1939 Interface” on page 9-2
• “J1939 Parameter Group Format” on page 9-3
• “J1939 Network Management” on page 9-4
• “J1939 Transport Protocols” on page 9-5
• “J1939 Channel Workflow” on page 9-6

 J1939 Transport Protocols

9-5

J1939 Channel Workflow
Transmit and receive parameter groups (PGs) using j1939Channel via a CAN network.

9 J1939

9-6

 J1939 Channel Workflow

9-7

See Also

More About
• “J1939 Interface” on page 9-2
• “J1939 Parameter Group Format” on page 9-3
• “J1939 Network Management” on page 9-4
• “J1939 Transport Protocols” on page 9-5

9 J1939

9-8

CAN Communications in Simulink

• “Vehicle Network Toolbox Simulink Blocks” on page 10-2
• “CAN Communication Workflows in Simulink” on page 10-3
• “Open the Vehicle Network Toolbox Block Library” on page 10-6
• “Build CAN Communication Simulink Models” on page 10-7
• “Create Custom CAN Blocks” on page 10-15

10

Vehicle Network Toolbox Simulink Blocks
This section describes how to use the Vehicle Network Toolbox CAN Communication block library.
The library contains these blocks:

• CAN Configuration — Configure the settings of a CAN device.
• CAN Log — Logs messages to file.
• CAN Pack — Pack signals into a CAN message.
• CAN Receive — Receive CAN messages from a CAN bus.
• CAN Replay— Replays logged messages to CAN bus or output port.
• CAN Transmit — Transmit CAN messages to a CAN bus.
• CAN Unpack — Unpack signals from a CAN message.

The CAN FD Communication block library contains similar blocks for the CAN FD protocol.

The Vehicle Network Toolbox block library is a tool for simulating message traffic on a CAN network,
as well for using the CAN bus to send and receive messages. You can use blocks from the block
library with blocks from other Simulink libraries to create sophisticated models.

To use the Vehicle Network Toolbox block library, you require Simulink, a tool for simulating dynamic
systems. Simulink is a model definition environment. Use Simulink blocks to create a block diagram
that represents the computations of your system or application. Simulink is also a model simulation
environment. Run the block diagram to see how your system behaves. If you are new to Simulink, see
“Get Started with Simulink” (Simulink) to understand its functionality better.

For more detailed information about the blocks in the Vehicle Network Toolbox block library see
“CAN Communication in Simulink”.

10 CAN Communications in Simulink

10-2

CAN Communication Workflows in Simulink
In this section...
“Message Transmission Workflow” on page 10-3
“Message Reception Workflow” on page 10-4

Message Transmission Workflow
This workflow represents the most common CAN Transmit model. Adjust your model as needed. For
more workflow examples, see “Build CAN Communication Simulink Models” on page 10-7 and the
“Simulink Tutorials” in the Vehicle Network Toolbox examples.

 CAN Communication Workflows in Simulink

10-3

Using Mux Blocks

• Use a Mux block to combine every message from the source if they are transmitted at the same
rate.

• Use one CAN Transmit block for each configured Mux block.

Message Reception Workflow

Message Filtering

Set up filters to process only relevant messages. This ensures optimal simulation performance.

Do not set up filters if you need to parse all bus communications.

Function-Call Triggered Message Processing

Set up your CAN Unpack block:

• In a function-call triggered subsystem if you want to unpack every message received by your CAN
Receive block.

• Without a function-call triggered subsystem if you want to unpack only the most recent message
received by your CAN Receive block.

10 CAN Communications in Simulink

10-4

Set up this system if your receive block is filtering for a single message.

Downstream Processing

For any downstream processing using received messages, include blocks:

• Within the function-call subsystem if your downstream process must respond to all messages
received in a single timestep in this model.

• Outside the function-call subsystem if your downstream process responds only to the most recent
message received in a given timestep in this model.
In this case, the CAN Unpack block will not respond to any other messages received, irrespective
of the messages ID.

 CAN Communication Workflows in Simulink

10-5

Open the Vehicle Network Toolbox Block Library
In this section...
“Using the Simulink Library Browser” on page 10-6
“Using the MATLAB Command Window” on page 10-6

Using the Simulink Library Browser
To open the Vehicle Network Toolbox block library, start Simulink by entering the following at the
MATLAB command prompt:

simulink

In the Simulink start page dialog, click Blank Model, and then Create Model. An empty, Editor
window opens.

In the model Editor toolstrip Simulation tab, click Library Browser.

The Simulink Library Browser opens. Its left pane contains a tree of available block libraries in
alphabetical order. Expand the Vehicle Network Toolbox node and click CAN Communication.

Using the MATLAB Command Window
To open the Vehicle Network Toolbox CAN Communications block library, enter canlib in the
MATLAB Command window.

MATLAB displays the contents of the library in a separate window.

10 CAN Communications in Simulink

10-6

Build CAN Communication Simulink Models

Build the Message Transmit Part of the Model
This section shows how to build the part of the model to transmit CAN messages, using Vehicle
Network Toolbox blocks with other blocks in the Simulink library.

Building a model to transmit CAN messages is detailed in the following steps:

• “Step 1: Create a New Model” on page 10-7
• “Step 2: Open the Block Library” on page 10-7
• “Step 3: Drag Vehicle Network Toolbox Blocks into the Model” on page 10-7
• “Step 4: Drag Other Blocks to Complete the Model” on page 10-8
• “Step 5: Connect the Blocks” on page 10-8
• “Step 6: Specify the Block Parameter Values” on page 10-8

For this portion of the example

• Use a MathWorks virtual CAN channel to transmit messages.
• Use the CAN Configuration block to configure your CAN channel.
• Use the Constant block to provide data to the CAN Pack block.
• Use the CAN Transmit block to send the data to the virtual CAN channel.

Use this section with “Build the Message Receive Part of the Model” on page 10-9 and “Save and
Run the Model” on page 10-13 to build your complete model and run the simulation.

Step 1: Create a New Model

1 To start Simulink and create a new model, enter the following at the MATLAB command prompt:

simulink

In the Simulink start page dialog, click Blank Model, and then Create Model. An empty Editor
window opens.

2 In the Editor toolstrip Simulation tab, click Save > Save As to assign a name to your new
model.

Step 2: Open the Block Library

1 In the model Editor toolstrip Simulation tab, click Library Browser.
2 The Simulink Library Browser opens. Its left pane contains a tree of available block libraries in

alphabetical order. Expand the Vehicle Network Toolbox node and click CAN
Communication.

Step 3: Drag Vehicle Network Toolbox Blocks into the Model

To place a block into your model, click a block in the library and drag it into the editor. For this
example, you need in your model one instance each of the following blocks:

• CAN Configuration

 Build CAN Communication Simulink Models

10-7

• CAN Pack
• CAN Transmit

Note The default configuration of each block in your model uses MathWorks Virtual 1 Channel 1. You
can configure the blocks in your model to use virtual channels or hardware devices from other
vendors.

Note By default, block names are not shown in the model. To display the block names while working
in the model Editor, in the toolstrip Format tab click Auto and clear the Hide Automatic Block
Names selection.

Step 4: Drag Other Blocks to Complete the Model

This example uses a Constant block as a source of data. From the Simulink > Commonly Used Blocks
library, add a Constant block to your model.

Step 5: Connect the Blocks

Make a connection between the Constant block and the CAN Pack block input. When you move the
pointer near the output port of the Constant block, the pointer becomes a crosshair. Click the
Constant block output port and, holding the mouse button, drag the pointer to the input port of the
CAN Pack block. Then release the button.

In the same way, make a connection between the output port of the CAN Pack block and the input
port of the CAN Transmit block.

The CAN Configuration block does not connect to any other block. This block configures its CAN
channel for communication.

Step 6: Specify the Block Parameter Values

You set parameters for each block in your model by double-clicking the block.

Configure the CAN Configuration Block

Double-click the CAN Configuration block to open its parameters dialog box. Verify or set the
following parameters:

• Device to MathWorks Virtual 1 (Channel 1).
• Bus speed to 500000.
• Acknowledge Mode to Normal.
• Click OK.

Configure the CAN Pack Block

Double-click the CAN Pack block to open its parameters dialog box. Verify or set the following
parameters:

• Data is input as to raw data.
• Name to the default value CAN Msg.

10 CAN Communications in Simulink

10-8

• Identifier type to the default Standard (11-bit identifier) type.
• Identifier to 500.
• Length (bytes) to the default length of 8.
• Click OK.

Configure the CAN Transmit Block

Double-click the CAN Transmit block to open its parameters dialog box. Verify or set the following
parameters:

• Device to MathWorks Virtual 1 (Channel 1).

Click OK.

Configure the Constant Block

Double-click the Constant block to open its parameters dialog box.

On the Main tab, set:

• Constant value to [1 2 3 4 5 6 7 8].
• Sample time to 0.01 seconds.

On the Signal Attributes tab, set:

• Output data type to uint8.

Click OK.

Your model looks like this figure.

Build the Message Receive Part of the Model
This section shows how to build the part of the model to receive CAN messages, using the Vehicle
Network Toolbox blocks with other blocks in the Simulink library. This example illustrates how to
receive data via a CAN network, in the following steps:

• “Step 7: Drag Vehicle Network Toolbox Blocks into the Model” on page 10-10

 Build CAN Communication Simulink Models

10-9

• “Step 8: Drag Other Blocks to Complete the Model” on page 10-10
• “Step 9: Connect the Blocks” on page 10-11
• “Step 10: Specify the Block Parameter Values” on page 10-12

For this portion of the example

• Use a MathWorks virtual CAN channel to receive messages.
• Use a CAN Configuration block to configure your virtual CAN channel.
• Use a CAN Receive block to receive the message.
• Use a Function-Call Subsystem block that contains the CAN Unpack block. This function takes the

data from the CAN Receive block and uses the parameters of the CAN Unpack block to unpack
your message data.

• Use a Scope block to display the received data.

Step 7: Drag Vehicle Network Toolbox Blocks into the Model

For this part of the example, start with one instance each of the following blocks from the Vehicle
Network Toolbox CAN Communication block library:

• CAN Configuration
• CAN Receive

Tip Configure separate CAN channels for the CAN Receive and CAN Transmit blocks. Each channel
needs its own CAN Configuration block.

Step 8: Drag Other Blocks to Complete the Model

Use the Function-Call Subsystem block from the Simulink Ports & Subsystems block library to build
your CAN Message pack subsystem.

1 Drag the Function-Call Subsystem block into the model.
2 Double-click the Function-Call Subsystem block to open the subsystem editor.
3 Double-click the In1 port label to rename it to CAN Msg.
4 Double-click the Out1 port label to rename it to Data.
5 Drag and drop the CAN Unpack block from the Vehicle Network Toolbox block library into this

subsystem. If placed between the input and output lines, they will automatically connect.

The inside of your Function-Call Subsystem block should now look like this figure.

10 CAN Communications in Simulink

10-10

The reason to place the CAN Unpack inside a Function-Call Subsystem is so that it can capture
all possible messages.

6 Click the back-arrow in the toolstrip to return to your model view.

Step 9: Connect the Blocks

1 Rename the Function-Call Subsystem block to CAN Unpack Subsystem.
2 Connect the CAN Msg output port of the CAN Receive block to the In1 input port of the CAN

Unpack Subsystem block.
3 Connect the f() output port of the CAN Receive block to the function() input port of the CAN

Unpack Subsystem block.
4 For a visual display of the simulation results, drag the Scope block from the Simulink block

library into your model.
5 Connect the CAN Msg output port of your CAN Unpack Subsystem block to the input port of

the Scope block.

The CAN Configuration block does not connect to any other block. This block configures the CAN
channel used by the CAN Receive block to receive the CAN message.

Your model looks like this figure.

 Build CAN Communication Simulink Models

10-11

Step 10: Specify the Block Parameter Values

Set parameters for the blocks in your model by double-clicking the block.

Configure the CAN Configuration1 Block

Double-click the CAN Configuration block to open its parameters dialog box. Set the:

• Device to MathWorks Virtual 1 (Channel 2).
• Bus speed to 500000.
• Acknowledge Mode to Normal.

Click OK.

Configure the CAN Receive Block

Double-click the CAN Receive block to open its Parameters dialog box. Set the:

• Device to MathWorks Virtual 1 (Channel 2).

10 CAN Communications in Simulink

10-12

• Sample time to 0.01.
• Number of messages received at each timestep to all.

Click OK.

Configure the CAN Unpack Subsystem

Double-click the CAN Unpack subsystem to open the Function-Call Subsystem editor. In the model,
double-click the CAN Unpack block to open its parameters dialog box. Set the:

• Data to be output as to raw data.
• Name to the default value CAN Msg.
• Identifier type to the default Standard (11-bit identifier).
• Identifier to 500.
• Length (bytes) to the default length of 8.

Click OK.

Save and Run the Model
This section shows you how to save the model you built, “Build the Message Transmit Part of the
Model” on page 10-7 and “Build the Message Receive Part of the Model” on page 10-9.

• “Step 11: Save the Model” on page 10-13
• “Step 12: Change Configuration Parameters” on page 10-13
• “Step 13: Run the Simulation” on page 10-13
• “Step 14: View the Results” on page 10-14

Step 11: Save the Model

Before you run the simulation, save your model by clicking the Save icon or selecting Save from the
Editor toolstrip Simulation tab.

Step 12: Change Configuration Parameters

1 In your model Editor toolstrip Modeling tab, click Model Settings. The Configuration
Parameters dialog box opens.

2 In the Solver Options section, select:

• Fixed-step from the Type list.
• Discrete (no continuous states) from the Solver list.

Step 13: Run the Simulation

To run the simulation, click the Run button in the Simulation or Modeling tab of the Editor
toolstrip.

When you run the simulation, the CAN Transmit block gets the message from the CAN Pack block. It
then transmits it via Virtual Channel 1. The CAN Receive block on Virtual Channel 2 receives this
message and hands it to the CAN Unpack Subsystem block to unpack the message.

 Build CAN Communication Simulink Models

10-13

While the simulation is running, the status bar at the bottom of the model window updates the
progress of the simulation.

Step 14: View the Results

Double-click the Scope block to view the message transfer on a graph. If you cannot see all the data
on the graph, click the Autoscale toolbar button, which automatically scales the axes to display all
stored simulation data.

In the graph, the horizontal axis represents the simulation time in seconds and the vertical axis
represents the received data value. You configured the model to pack and transmit an array of
constant values, [1 2 3 4 5 6 7 8], every 0.01 seconds of simulation time. These values are
received and unpacked. The output in the Scope window represents the received data values.

See Also

More About
• “Build and Edit a Model Interactively” (Simulink)

10 CAN Communications in Simulink

10-14

Create Custom CAN Blocks
In this section...
“Blocks Using Simulink Buses” on page 10-15
“Blocks Using CAN Message Data Types” on page 10-16

You can create custom Receive and Transmit blocks to use with hardware currently not supported
by Vehicle Network Toolbox. Choose one of the following work flows.

• “Blocks Using Simulink Buses” on page 10-15 (recommended) — Use Simulink bus signals to
connect blocks. Create functions and blocks with S-Function Builder and S-Function blocks.

• “Blocks Using CAN Message Data Types” on page 10-16 — Use CAN message data types to share
information. Write and compile your own C++ code to define functions, and MATLAB code to
create blocks.

Blocks Using Simulink Buses
To create custom blocks for Vehicle Network Toolbox that use Simulink CAN buses, you can use the
S-function builder. For full instructions on building S-functions and blocks this way, see “Build S-
Functions Automatically” (Simulink). The following example uses the steps outlined in that topic.

This example shows you how to build two custom blocks for transmitting and receiving CAN
messages. These blocks use a Simulink message bus to interact with CAN Pack and CAN Unpack
blocks.

1 Create a Simulink message bus in the MATLAB workspace for CAN or CAN FD.

canMessageBusType

or

canFDMessageBusType

Each of these functions creates a variable in the workspace named CAN_MESSAGE_BUS or
CAN_FD_MESSAGE_BUS, respectively. You use this variable later for building your S-functions.

2 Open a new blank model in Simulink, and add to your model an S-Function Builder block from
the block library.

3 Double-click the S-Function Builder block to open its dialog box. The first function you build is
for transmitting.

4 Among the settings in the dialog box, define a function name and specify usage of a Simulink bus.

• S-function name: CustomCANTransmit
• Data Properties: Input Ports: Bus: On, Bus Name: CAN_MESSAGE_BUS, as shown in the

following figure.

 Create Custom CAN Blocks

10-15

For CAN FD, set the bus name to CAN_FD_MESSAGE_BUS.

In your function and block building, use the other tabs in the dialog box to define the code for
interaction with your device driver, and remove unnecessary ports.

5 Click Build. The code files are placed in the current working folder of MATLAB.
6 Place a new S-Function Builder block in your model, and repeat the steps to build an S-function

named CustomCANReceive. Use the same settings, except for input and output ports. The
receive block output port uses the same bus name as the transmit function input.

7 Build the receive function, and remove both S-Function Builder blocks from your model. At this
point, you can use the files generated by the S-Function Builder as a set of templates, which you
can further edit and compile with your own tools. Alternatively, you can use S-Function blocks to
run your functions.

8 Add two S-Function blocks to your model. Open each block, and set its Model Parameters S-
function name field, so you have one each of CustomCANTransmit and CustomCANReceive.

At this point you could create a mask for each block to allow access to parameters for your
hardware. This example does not need masks for these blocks.

9 Add other necessary blocks to your model, including:

• CAN Pack or CAN FD Pack
• CAN Unpack or CAN FD Unpack

10 Set the block parameters and connections.

A typical model might look like this. Here a Constant block and a Display block allow verification
of connections and model behavior.

Blocks Using CAN Message Data Types

Note For ease of design and to take advantage or more Simulink features, it is recommended that
you use Simulink buses instead of CAN message data types when possible. See “Blocks Using
Simulink Buses” on page 10-15.

To create your own blocks for use with other Vehicle Network Toolbox blocks, can use a custom CAN
data type. Register this custom CAN data type in a C++ S-function.

Note You must use a C++ file type S-function (.cpp) to create custom blocks that use CAN message
data types. Using a C-file type S-function (.c) might cause linker errors.

10 CAN Communications in Simulink

10-16

To register and use the custom CAN data type, in your S-function:

1 Define the IMPORT_SCANUTIL identifier that imports the required symbols when you compile the
S-function:

#define IMPORT_SCANUTIL
2 Include the can_datatype.h header located inmatlabroot\toolbox\vnt\vntblks

\include\candatatype at the top of the S-function:

#include "can_datatype.h"

Note The header can_message.h included by can_datatype.h is located in matlabroot
\toolbox\shared\can\src\scanutil\. See the can_message.h file for information on the
CAN_MESSAGE and CAN_DATATYPE structures.

3 Link your S-function during build to the scanutil.lib located in the matlabroot\toolbox
\vnt\vntblks\lib\ARCH folder. The shared library scanutil.dll, is located in the
matlabroot\bin\ARCH

4 Call this function in mdlInitializeSizes to initialize the custom CAN data type:

mdlInitialize_CAN_datatype(S);
5 Get custom data type ID using ssGetDataTypeId:

dataTypeID = ssGetDataTypeId(S,SL_CAN_MESSAGE_DTYPE_NAME);
6 Do one of the following:

• To create a receive block, set output port data type to CAN_MESSAGE:

ssSetOutputPortDataType(S,portID,dataTypeID);
• To create a transmit block, set the input port to CAN_MESSAGE:

ssSetInputPortDataType(S,portID,dataTypeID);

See Also
Functions
canFDMessageBusType | canMessageBusType

More About
• “C/C++ S-Function Basics” (Simulink)
• “Build S-Functions Automatically” (Simulink)

 Create Custom CAN Blocks

10-17

Hardware Limitations

This topic describes limitations of using hardware in the Vehicle Network Toolbox based on
limitations placed by the hardware vendor:

• “Vector Hardware Limitations” on page 11-2
• “Kvaser Hardware Limitations” on page 11-3
• “National Instruments Hardware Limitations” on page 11-4
• “File Format Limitations” on page 11-5
• “Platform Support” on page 11-6

11

Vector Hardware Limitations
You cannot have more than 64 physical or 32 virtual simultaneous connections using a Vector CAN
device.

If you use more than the number of connections Vector allows, you might get an error:

• In MATLAB R2013a and later:
Unable to query hardware information for the selected CAN channel object.

• In MATLAB R2012b:

boost thread resource allocation error.
• In MATLAB R2012a and earlier:

An unhandled error occurred with CAN device.

To work around this issue in Simulink:

• Use only a single Receive block for message reception in Simulink and connect all
downstream Unpack blocks to it.

• Use a Mux block to combine CAN messages from Unpack blocks transmitting at the same rate
into a single Transmit block.

To work around this issue in MATLAB:

• Try reusing channels you have already created for your application in MATLAB.

11 Hardware Limitations

11-2

Kvaser Hardware Limitations
You must connect your Kvaser device before starting MATLAB.

The normal workflow with a Kvaser device is to connect the device before starting MATLAB. If
you connect a Kvaser device while MATLAB is already running, you might see the following
message.

Vehicle Network Toolbox has detected a supported Kvaser device.

To enable the device, shut down MATLAB. Then with the device connected, restart MATLAB.

 Kvaser Hardware Limitations

11-3

National Instruments Hardware Limitations
Limited number of connections to an NI-XNET channel

When using NI-XNET for CAN or CAN FD communication, there is a limit to the total number of
connections to the channel from MATLAB or Simulink.

To work around this issue in Simulink:

• Use only a single Receive block for message reception in Simulink and connect all
downstream Unpack blocks to it.

• Use a Mux block to combine CAN messages from Unpack blocks transmitting at the same rate
into a single Transmit block.

To work around this issue in MATLAB:

• Try reusing channels you have already created for your application.

11 Hardware Limitations

11-4

File Format Limitations

MDF-File
The following MDF-file functions are not supported on Linux® systems:

• mdfSort
• mdfVisualize

CDFX-File
When using CDFX-files, the following limitations apply:

• SW-AXIS-CONT elements with the category COM_AXIS, CURVE_AXIS, or RES_AXIS must use the
SW-INSTANCE-REF element, and the axis must be defined in a separate instance.

• Instances with the category VAL_BLK, MAP, CUBOID, CUBE_4, or CUBE_5 that represent
multidimensional arrays must use the VG element to group the physical values.

• DTD-based headers are not supported. The file header must be of the form:
<?xml version="1.0" encoding="utf-8"?>
<MSRSW xmlns="http://www.asam.net/schema/CDF/r2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.asam.net/schema/CDF/r2.1 cdf_v2.1.0.sl.xsd">

BLF-File
Although Vector BLF-files support many networks, Vehicle Network Toolbox support of BLF-files is
limited to only CAN and CAN FD on Windows® operating systems.

See Also
Functions
blfread | blfwrite | cdfx | mdf | mdfDatastore

More About
• “Platform Support” on page 11-6

 File Format Limitations

11-5

Platform Support
The following tables indicate which toolbox features are available for each operating system platform.

Vendor Windows Linux
MathWorks virtual channels
Vector
PEAK-System
Kvaser
National Instruments

File Format Windows Linux
BLF
CDF
MDF

See Also

More About
• “Vendor Limitations”
• “File Format Limitations” on page 11-5

11 Hardware Limitations

11-6

XCP Communications in Simulink

• “Vehicle Network Toolbox XCP Simulink Blocks” on page 12-2
• “Open the Vehicle Network Toolbox XCP Block Libraries” on page 12-3

12

Vehicle Network Toolbox XCP Simulink Blocks
Vehicle Network Toolbox provides two sets of XCP block libraries, which provide blocks for handling
XCP message traffic on a CAN network or by UDP. The CAN and UDP libraries contain the following
blocks:

CAN:

• XCP CAN Transport Layer— Transmit and Receive XCP messages over CAN bus.
• XCP CAN Configuration — Configure XCP settings for CAN.
• XCP CAN Data Acquisition — Acquire XCP data over CAN.
• XCP CAN Data Stimulation — Stimulate XCP data over CAN.

UDP:

• XCP UPD Configuration — Configure XCP settings for UDP.
• XCP UDP Data Acquisition — Acquire XCP data over UDP.
• XCP UDP Data Stimulation — Stimulate XCP data over UDP.

You can use these blocks with blocks from other Simulink libraries to create sophisticated models.

To use the Vehicle Network Toolbox XCP block libraries, you require Simulink, a tool for simulating
dynamic systems. Simulink is a model definition environment. Use Simulink blocks to create a block
diagram that represents the computations of your system or application. Simulink is also a model
simulation environment. Run the block diagram to see how your system behaves. If you are new to
Simulink, read “Get Started with Simulink” (Simulink) to understand its functionality better.

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN
Transport Layer | XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

More About
• “Open the Vehicle Network Toolbox XCP Block Libraries” on page 12-3
• “XCP Data Acquisition over CAN”

12 XCP Communications in Simulink

12-2

Open the Vehicle Network Toolbox XCP Block Libraries

Using the MATLAB Command Window
To open the Vehicle Network Toolbox XCP block libraries, enter vntxcplib in the MATLAB
Command window.

The Simulink Library Browser opens in a separate window and displays two libraries for XCP blocks.
Double-click either CAN or UDP for the protocol you want.

Using the Simulink Library Browser
To open the Vehicle Network Toolbox XCP block libraries using Simulink windows and menus, use the
following steps.

1 Click Simulink in the MATLAB toolstrip Home tab.
2 In the Simulink Start Page hover over Blank Model and click Create Model, or open one of

your existing models.
3 In the model editor window, select View > Library Browser.
4 The left pane of the browser lists all available block libraries. Expand the Vehicle Network

Toolbox and XCP Communication trees, then select either CAN or UDP for the protocol you
want.

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN
Transport Layer | XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

More About
• “Vehicle Network Toolbox XCP Simulink Blocks” on page 12-2
• “XCP Data Acquisition over CAN”

 Open the Vehicle Network Toolbox XCP Block Libraries

12-3

Functions

13

attachDatabase
Attach CAN database to messages and remove CAN database from messages

Syntax
attachDatabase (message,database)
attachDatabase (message,[])

Description
attachDatabase (message,database) attaches the specified database to the specified message.
You can then use signal-based interaction with the message data, interpreting the message in its
physical form.

attachDatabase (message,[]) removes any attached database from the specified message. You
can then interpret messages in their raw form.

Examples

Attach CAN Database to Message

Attach Database.dbc to a received CAN message.

candb = canDatabase('C:\Database.dbc')
message = receive(canch,Inf)
attachDatabase(message,candb)

Input Arguments
message — CAN message for attaching or removing database
CAN message object

The name of the CAN message that you want to attach the database to or remove the database from,
specified as a CAN message object.
Example: message = receive(canch,Inf)

database — Handle of database to attach or remove
canDatabase handle

Handle of database (.dbc file) that you want to attach to the message or remove from the message,
specified as a canDatabase handle.
Example: candb = canDatabase('C:\Database.dbc')

Tips
If the specified message is an array, then the database attaches itself to each entry in the array. The
database attaches itself to the message even if the message you specified does not exist in the

13 Functions

13-2

database. The message then appears and operates like a raw message. To attach the database to the
CAN channel directly, edit the Database property of the channel object.

See Also
Functions
canDatabase | receive

Introduced in R2009a

 attachDatabase

13-3

attributeInfo
Information about CAN database attributes

Syntax
info = attributeInfo(db,'Database',AttrName)
info = attributeInfo(db,'Node',AttrName,NodeName)
info = attributeInfo(db,'Message',AttrName,MsgName)
info = attributeInfo(db,'Signal',AttrName,MsgName,SignalName)

Description
info = attributeInfo(db,'Database',AttrName) returns a structure containing information
for the specified database attribute.

If no matches are found in the database, attributeInfo returns an empty attribute information
structure.

info = attributeInfo(db,'Node',AttrName,NodeName) returns a structure containing
information for the specified node attribute.

info = attributeInfo(db,'Message',AttrName,MsgName) returns a structure containing
information for the specified message attribute.

info = attributeInfo(db,'Signal',AttrName,MsgName,SignalName) returns a structure
containing information for the specified signal attribute.

Examples

View Database Attribute Information

Create a CAN database object, and view information about its bus type and database version.

db = canDatabase('J1939DB.dbc');
db.Attributes

 'BusType'
 'DatabaseVersion'
 'ProtocolType'

info = attributeInfo(db,'Database','BusType')

 Name: 'BusType'
 ObjectType: 'Database'
 DataType: 'Double'
 DefaultValue: 'CAN-test'
 Value: 'CAN'

info = attributeInfo(db,'Database','DatabaseVersion')

 Name: 'DatabaseVersion'
 ObjectType: 'Database'

13 Functions

13-4

 DataType: 'Double'
 DefaultValue: '1.0'
 Value: '8.1'

View Node Attribute Information

View node attribute information from CAN database.

db = canDatabase('J1939DB.dbc');
db.Nodes

 'AerodynamicControl'
 'Aftertreatment_1_GasIntake'
 'Aftertreatment_1_GasOutlet'

db.NodeInfo(1).Attributes

 'ECU'
 'NmJ1939AAC'
 'NmJ1939Function'

info = attributeInfo(db,'Node','ECU','AerodynamicControl')

 Name: 'ECU'
 ObjectType: 'Network node'
 DataType: 'Double'
 DefaultValue: 'ECU-1'
 Value: 'ECU-10'

View Message Attribute Information

View message attribute information from CAN database.

db = canDatabase('J1939DB.dbc');
db.Messages

 'A1'
 'A1DEFI'
 'A1DEFSI'

db.MessageInfo(1).Attributes

a = db.MessageInfo(1).Attributes
a =
 'GenMsgCycleTime'
 'GenMsgCycleTimeFast'
 'GenMsgDelayTime'
 'VFrameFormat'

info = attributeInfo(db,'Message','GenMsgCycleTime','A1')

 Name: 'GenMsgCycleTime'
 ObjectType: 'Message'
 DataType: 'Undefined'

 attributeInfo

13-5

 DefaultValue: 0
 Value: 500

View Signal Attribute Information from Message

View message signal attribute information from CAN database.

db = canDatabase('J1939DB.dbc');
s = signalInfo(db,'A1')

s =
2x1 struct array with fields:
 Name
 Comment
 StartBit
 SignalSize
 ByteOrder
 Signed
 ValueType
 Class
 Factor
 Offset
 Minimum
 Maximum
 Units
 ValueTable
 Multiplexor
 Multiplexed
 MultiplexMode
 RxNodes
 Attributes
 AttributeInfo

s(1).Name

EngBlowerBypassValvePos

s(1).Attributes

 'GenSigEVName'
 'GenSigILSupport'
 'GenSigInactiveValue'

info = attributeInfo(db,'Signal','GenSigInactiveValue','A1','EngBlowerBypassValvePos')

 Name: 'GenSigInactiveValue'
 ObjectType: 'Signal'
 DataType: 'Undefined'
 DefaultValue: 0
 Value: 0

Input Arguments
db — CAN database
CAN database object

CAN database, specified as a CAN database object.

13 Functions

13-6

Example: db = canDatabase(_____)

AttrName — Attribute name
char vector | string

Attribute name, specified as a character vector or string.
Example: 'BusType'
Data Types: char | string

NodeName — Node name
char vector | string

Node name, specified as a character vector or string.
Example: 'AerodynamicControl'
Data Types: char | string

MsgName — Message name
char vector | string

Message name, specified as a character vector or string.
Example: 'A1'
Data Types: char | string

SignalName — Signal name
char vector | string

Signal name, specified as a character vector or string.
Example: 'EngBlowerBypassValvePos'
Data Types: char | string

Output Arguments
info — Attribute information
structure

Attribute information, returned as a structure with these fields:

Field Description
Name Attribute name
ObjectType Type of attribute
DataType Data class of attribute value
DefaultValue Default value assigned to attribute
Value Current value of attribute

 attributeInfo

13-7

See Also
Functions
canDatabase | messageInfo | nodeInfo | signalInfo | valueTableText

Properties
AttributeInfo | Attributes

Introduced in R2015b

13 Functions

13-8

blfinfo
Get information about Vector BLF file

Syntax
binf = blfinfo(blfFile)

Description
binf = blfinfo(blfFile) parses general information about the format and contents of a Vector
Binary Logging Format BLF-file and returns the information in the structure binf.

Examples

View Information about BLF-File

Retrieve and view information about a BLF-file.

binf = blfinfo("c:\DataFiles\MultiChannelFile.blf")

binf =

 struct with fields:

 Name: "MultiChannelFile.blf"
 Path: "c:\DataFiles\MultiChannelFile.blf"
 Application: "CANalyzer"
 ApplicationVersion: "10.0.114"
 Objects: 35
 StartTime: 18-Jul-2018 16:47:11.490
 EndTime: 18-Jul-2018 16:47:18.490
 ChannelList: [2×3 table]

binf.ChannelList

ans =

 2×3 table

 ChannelID Protocol Objects
 _________ ________ _______

 1 "CAN FD" 4
 2 "CAN" 4

Input Arguments
blfFile — Path to BLF-file
string | char

 blfinfo

13-9

Path to BLF-file, specified as a string or character vector. The value can specify a file in the current
folder, or a relative or full path name.
Example: "MultipleChannelFile.blf"
Data Types: char | string

Output Arguments
binf — Information from BLF-file
struct

Information from BLF-file, returned as a structure with the following fields.

Name
Path
Application
ApplicationVersion
Objects
StartTime
EndTime
ChannelList

See Also
Functions
blfread | blfwrite

Introduced in R2019a

13 Functions

13-10

blfread
Read data from Vector BLF-file

Syntax
mdata = blfread(blfFile)
bdata = blfread(blfFile,chanID)
bdata = blfread(___ ,Name,Value)

Description
mdata = blfread(blfFile) reads all the data from the specified BLF-file and returns a cell array
of timetables to the variable bdata. The index of each element in the cell array corresponds to the
channel number of the data in the file.

bdata = blfread(blfFile,chanID) reads message data for the specified channel from the BLF-
file and returns a timetable.

bdata = blfread(___ ,Name,Value) reads message data filtered by parameter options for CAN
database and message IDs.

Examples

Read Data from BLF-File

Read message data from a BLF-file, applying optional filters.

data = blfread("myfile.blf",2)
candb = canDatabase("testdb.dbc");

data = blfread("myfile.blf", "Database", candb)
data = blfread("myfile.blf", "Database", candb, "CANStandardFilter", 1:10)
data = blfread("myfile.blf", "Database", candb, "CANExtendedFilter", 3:7)
data = blfread("myfile.blf", "Database", candb, "CANStandardFilter", 1:10, ...
 "CANExtendedFilter", 3:7)
data = blfread("myfile.blf", "CANStandardFilter", 1:10, "CANExtendedFilter", 3:7)

Input Arguments
blfFile — Path to BLF-file
string | char

Path to BLF-file, specified as a string or character vector. The value can specify a file in the current
folder, or a relative or full path name.
Example: "MultipleChannelFile.blf"
Data Types: string | char

chanID — Channel ID
numeric

 blfread

13-11

Channel ID, specified as a numeric scalar value, for which to read data from the BLF-file. If not
specified, all channels are read.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "CANStandardFilter",1:8

Database — CAN database
can.Database

CAN database to use for message decoding, specified as a can.Database object.
Example: candb()

CANStandardFilter — Message standard IDs
numeric array

Message standard IDs, specified as an array of numeric values identifying which messages to import.
Message IDs are general, and apply to both CAN and CAN FD bus types. The value can specify a
scalar or an array of either a range or noncontiguous IDs. By default, all standard ID messages are
imported.
Example: [1:10 45 100:123]
Data Types: string | char

CANExtendedFilter — Message extended IDs
numeric array

Message extended IDs, specified as an array of numeric values identifying which messages to import.
Message IDs are general, and apply to both CAN and CAN FD bus types. The value can specify a
scalar or an array of either a range or noncontiguous IDs. By default, all extended ID messages are
imported.
Example: [1 8:10 1001:1080]
Data Types: string | char

Output Arguments
mdata — Message data from BLF-file
cell array of timetables | timetable

Message data from BLF-file, returned as a cell array of timetables. If you specify a single channel to
read, this returns a timetable.

13 Functions

13-12

See Also
Functions
blfinfo | blfwrite | canDatabase

Introduced in R2019a

 blfread

13-13

blfwrite
Write data to Vector BLF-file

Syntax
blfwrite(blfFile,data,chanID,prot)

Description
blfwrite(blfFile,data,chanID,prot) writes the specified timetables in data to the specified
BLF-file. The function allows writing only to new files, so you cannot overwrite existing files or data.

Examples

Write Data to a BLF-File

Write timetables of data to specified channels.

Write one data set to a single channel.

blfwrite("newfile.blf",data,1,"CAN")

Write two data sets to the same channel.

blfwrite("newfile.blf",{data1,data2},[1,1],["CAN FD","CAN FD"])

Write two data sets to separate channels with different protocols.

blfwrite("newfile.blf",{data1,data2},[1,2],["CAN","CAN FD"])

Input Arguments
blfFile — Path to BLF-file
string | char

Path to BLF-file to write, specified as a string or character vector. The value can specify a file in the
current folder, or a relative or full path name.
Example: "MultipleChannelFile.blf"
Data Types: string | char

data — Data to write to BLF-file
timetable

Data to write to BLF-file, specified as a timetable or cell array of timetables. You can write multiple
tables for the same channel if the protocol is the same.
Data Types: timetable

13 Functions

13-14

chanID — Channel IDs
numeric

Channel IDs, specified as a numeric scalar or array value, identifying the channels on which the data
is written.
Example: [1,2,4]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prot — Message protocol
"CAN""CAN FD"

Message protocol, specified as "CAN", "CAN FD". When writing multiple sets of data, specify
protocol as an array of strings corresponding to the data sets being written.
Example: ["CAN","CAN FD","CAN"]
Data Types: char | string

See Also
Functions
blfinfo | blfread

Introduced in R2019a

 blfwrite

13-15

canChannel
Construct CAN channel connected to specified device

Syntax
canch = canChannel(vendor,device,devicechannelindex)
canch = canChannel(vendor,device)
canch = canChannel(___ ,'ProtocolMode','CAN FD')

Description
canch = canChannel(vendor,device,devicechannelindex) returns a CAN channel
connected to a device from a specified vendor.

For Vector products, device is a character vector that combines the device type and a device index,
such as 'CANCaseXL 1'. For example, if there are two CANcardXL devices, device can be
'CANcardXL 1' or 'CANcardXL 2'.

Use canch = canChannel(vendor,device) for National Instruments and PEAK-System devices.

For National Instruments, vendor is the character vector 'NI', and the devicenumber is interface
number defined in the NI Measurement & Automation Explorer.

For PEAK-System devices vendor is the character vector 'PEAK-System', and the devicenumber
is device number defined for the channel.

canch = canChannel(___ ,'ProtocolMode','CAN FD') returns a channel connected to a
device supporting CAN FD. The default ProtocolMode setting is 'CAN', indicating standard CAN
support. A channel configured for 'CAN' cannot transmit or receive CAN FD messages.

Examples

Create CAN Channels for Various Vendors

Create CAN channels for each of several vendors.

canch1 = canChannel('Vector','CANCaseXL 1',1);
canch2 = canChannel('Vector','Virtual 1',2);
canch3 = canChannel('NI','CAN1');
canch4 = canChannel('PEAK-System','PCAN_USBBUS1');
canch5 = canChannel('MathWorks','Virtual 1',2)

canch5 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0

13 Functions

13-16

 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

Create CAN FD Channel

Create a CAN FD channel on a MathWorks virtual device.

canch6 = canChannel('MathWorks','Virtual 1',2,'ProtocolMode','CAN FD')

canch6 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN FD'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Bit Timing Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 ArbitrationBusSpeed: []
 DataBusSpeed: []

 Other Information
 Database: []
 UserData: []

Input Arguments
vendor — CAN device vendor
'MathWorks' | 'Kvaser' | 'NI' | 'PEAK-System' | 'Vector'

 canChannel

13-17

CAN device vendor, specified as 'MathWorks', 'Kvaser', 'NI', 'PEAK-System', or 'Vector'.
Example: 'MathWorks'
Data Types: char | string

device — CAN to connect channel to
character vector | string

CAN device to connect channel to, specified as a character vector or string. Valid values depend on
the specified vendor.
Example: 'Virtual 1'
Data Types: char | string

devicechannelindex — CAN device channel port or index
numeric value

CAN device channel port or index, specified as a numeric value.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
canch — CAN device channel
CAN channel object

CAN device channel returned as a CAN channel object, with the following properties.

CAN Channel Properties:

BusLoad Load on CAN bus
Database Store CAN database information
MessageReceivedFcn Specify function to run
MessageReceivedFcnCount Specify number of messages available before function is triggered
Running Determine status of channel
SilentMode Specify if channel is active or silent
TransceiverName Name of device transceiver
TransceiverState Display state or mode of transceiver
UserData Enter custom data

CAN Device Properties:

13 Functions

13-18

Device Display channel device type
Device(NI) Display NI CAN channel device type
DeviceChannelIndex Display device channel index
DeviceSerialNumber Display device serial number
DeviceVendor Display device vendor name
InitializationAccess Determine control of device channel

Bit Timing Properties:

BusSpeed Bit rate of bus
NumOfSamples Display number of samples available to channel
SJW Synchronization jump width (SJW) of bit time segment
TSEG1 Display amount that channel can lengthen sample time
TSEG2 Display amount that channel can shorten sample time

Tips
• Use canChannelList to obtain a list of available devices.
• You cannot have more than one canChannel configured on the same NI-XNET or PEAK-System

device channel.
• You cannot use the same variable to create multiple channels sequentially. Clear any channel in

use before using the same variable to construct a new CAN channel.
• You cannot create arrays of CAN channel objects. Each object you create must exist as its own

individual variable.

See Also
Functions
canChannelList

Introduced in R2009a

 canChannel

13-19

CAN.ChannelInfo class
Package: CAN

Display device channel information

Note can.ChannelInfo will be removed in a future release. Use canChannelList instead.

Description
vendor.ChannelInfo(index) displays channel information for the device vendor with the
specified index. Obtain the vendor information using CAN.VendorInfo.

Input Arguments
index — Device channel index
numeric value

Device channel index specified as a numeric value.

Properties
Device

Name of the device.

DeviceChannelIndex

Index number of the specified device channel.

DeviceSerialNumber

Serial number of the specified device.

ObjectConstructor

Information on how to construct a CAN channel using this device.

Examples

Examine Kvaser Device Channel Information

Get information on installed CAN devices.

info = canHWInfo

info =

CAN Devices Detected

13 Functions

13-20

Vendor	Device	Channel	Serial Number	Constructor
 Kvaser | Virtual 1 | 1 | 0 | canChannel('Kvaser', 'Virtual 1', 1)
 Kvaser | Virtual 1 | 2 | 0 | canChannel('Kvaser', 'Virtual 1', 2)
 Vector | Virtual 1 | 1 | 0 | canChannel('Vector', 'Virtual 1', 1)
 Vector | Virtual 1 | 2 | 0 | canChannel('Vector', 'Virtual 1', 2)

Save the Kvaser device information in an object.

vendor = info.VendorInfo(1);

Get information on the first channel of the specified device.

vendor.ChannelInfo(1)

ans =

 ChannelInfo with properties:

 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ObjectConstructor: 'canChannel('Kvaser', 'Virtual 1', 1)'

See Also
Functions
can.VendorInfo | canHWInfo

 CAN.ChannelInfo class

13-21

canChannelList
Information on available CAN devices

Syntax
chans = canChannelList

Description
chans = canChannelList returns a table of information about available CAN devices.

Examples

View Available CAN Devices

View available CAN devices and programmatically read a device's supported protocol modes.

chans = canChannelList

chans =

 4×6 table

 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 ___________ ___________ _______ ___________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "Vector" "Virtual 1" 1 "Virtual" "CAN" "0"
 "Vector" "Virtual 1" 2 "Virtual" "CAN" "0"

pm = chans{3,5}

pm =

 "CAN"

pm = chans{3,'ProtocolMode'}

pm =

 "CAN"

Output Arguments
chans — Information on available CAN devices
table

Information on available CAN devices, returned as a table. To access specific elements, you can index
into the table.

13 Functions

13-22

See Also
Functions
canChannel

Introduced in R2017b

 canChannelList

13-23

canDatabase
Create handle to CAN database file

Syntax
candb = canDatabase('dbfile.dbc')

Description
candb = canDatabase('dbfile.dbc') creates a handle to the specified database file
dbfile.dbc. You can specify a file name, a full path, or a relative path. MATLAB looks for
dbfile.dbc on the MATLAB path. Vehicle Network Toolbox supports Vector CAN database (.dbc)
files.

Examples

Create CAN Database Object

Create objects for example database files.

candb = canDatabase([(matlabroot) '\examples\vnt\demoVNT_CANdbFiles.dbc'])

candb =

 Database with properties:

 Name: 'demoVNT_CANdbFiles'
 Path: 'F:\matlab\examples\vnt\demoVNT_CANdbFiles.dbc'
 Nodes: {}
 NodeInfo: [0×0 struct]
 Messages: {5×1 cell}
 MessageInfo: [5×1 struct]
 Attributes: {}
 AttributeInfo: [0×0 struct]
 UserData: []

candb = canDatabase([(matlabroot) '\examples\vnt\J1939.dbc'])

candb =

 Database with properties:

 Name: 'J1939'
 Path: 'F:\matlab\examples\vnt\J1939.dbc'
 Nodes: {2×1 cell}
 NodeInfo: [2×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {3×1 cell}

13 Functions

13-24

 AttributeInfo: [3×1 struct]
 UserData: []

Input Arguments
dbfile.dbc — Database file name
char vector | string

Database file name, specified as a character vector or string.. You can specify just the name or the full
path of the database file.
Example: 'J1939.dbc'
Data Types: char | string

Output Arguments
candb — CAN database
database object

CAN database, returned as a database object with the following properties:

AttributeInfo Information on CAN database attributes
Attributes Attribute names from CAN database
MessageInfo Information on CAN database messages
Messages Message names from CAN database
Name (Database) CAN database name
NodeInfo Information on CAN database nodes
Nodes Node names from CAN database
Path CAN database folder path
SignalInfo Information on CAN database message signals
UserData Enter custom data

See Also
Functions
canMessage

Introduced in R2009a

 canDatabase

13-25

canFDChannel
Construct CAN FD channel connected to specified device

Syntax
canch = canFDChannel(vendor,device,devicechannelindex)
canch = canFDChannel(vendor,device)

Description
canch = canFDChannel(vendor,device,devicechannelindex) returns a CAN FD channel
connected to a device from a specified vendor.

For Vector and Kvaser products, device combines the device type and a device index, such as
'CANCaseXL 1'. For example, if there are two Vector devices, device can be 'VN1610 1' or
'VN1610 2'.

canch = canFDChannel(vendor,device) returns a CAN FD channel connected to a National
Instruments or PEAK-System device.

For National Instruments, vendor is the character vector 'NI', and the devicenumber is the
interface number defined in the NI Measurement & Automation Explorer.

For PEAK-System devices vendor is the character vector 'PEAK-System', and devicenumber is
the device number defined for the channel.

Examples

Create CAN FD Channels for Various Vendors

Create CAN FD channels for each of several vendors.

ch1 = canFDChannel('Vector','VN1610 1',1);
ch2 = canFDChannel('Kvaser','USBcan Pro 1',1);
ch3 = canFDChannel('NI','CAN0');
ch4 = canFDChannel('PEAK-System','PCAN_USBBUS1');
ch5 = canFDChannel('MathWorks','Virtual 1',1)

ch5 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN FD'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1

13 Functions

13-26

 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Bit Timing Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 ArbitrationBusSpeed: []
 DataBusSpeed: []

 Other Information
 Database: []
 UserData: []

Input Arguments
vendor — CAN device vendor
'MathWorks' | 'Kvaser' | 'NI' | 'PEAK-System' | 'Vector'

CAN device vendor, specified as 'MathWorks', 'Kvaser', 'NI', 'PEAK-System', or 'Vector'.
Example: 'MathWorks'
Data Types: char | string

device — CAN FD device to connect channel to
character vector | string

CAN FD device to connect channel to, specified as a character vector or string. Valid values depend
on the specified vendor.
Example: 'Virtual 1'
Data Types: char | string

devicechannelindex — CAN FD device channel port or index
numeric value

CAN FD device channel port or index, specified as a numeric value.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
canch — CAN FD device channel
CAN FD channel object

CAN FD device channel returned as a CAN channel object, with the following properties.

CAN Channel Properties:

 canFDChannel

13-27

BusLoad Load on CAN bus
Database Store CAN database information
MessageReceivedFcn Specify function to run
MessageReceivedFcnCount Specify number of messages available before function is triggered
Running Determine status of channel
SilentMode Specify if channel is active or silent
TransceiverName Name of device transceiver
TransceiverState Display state or mode of transceiver
UserData Enter custom data

CAN Device Properties:

Device Display channel device type
Device(NI) Display NI CAN channel device type
DeviceChannelIndex Display device channel index
DeviceSerialNumber Display device serial number
DeviceVendor Display device vendor name
InitializationAccess Determine control of device channel

Bit Timing Properties:

BusSpeed Bit rate of bus
NumOfSamples Display number of samples available to channel
SJW Synchronization jump width (SJW) of bit time segment
TSEG1 Display amount that channel can lengthen sample time
TSEG2 Display amount that channel can shorten sample time

Tips
• Use canFDChannelList to obtain a list of available device channels.
• You cannot have more than one CAN FD channel configured on the same NI-XNET or PEAK-

System device channel.
• You cannot use the same variable to create multiple channels sequentially. Clear any channel in

use before using the same variable to construct a new channel object.
• You cannot create arrays of channel objects. Each object you create must exist as its own

individual variable.

See Also
Functions
canFDChannelList

Introduced in R2018b

13 Functions

13-28

canFDChannelList
Information on available CAN FD device channels

Syntax
chans = canFDChannelList

Description
chans = canFDChannelList returns a table of information about available CAN FD devices.

Examples

View Available CAN FD Device Channels

View available CAN FD device channels and programmatically read supported protocol modes.

chans = canFDChannelList

chans =

 2×6 table

 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 ___________ ___________ _______ ___________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"

pm = chans{2,5}

pm =

 "CAN, CAN FD"

pm = chans{2,'ProtocolMode'}

pm =

 "CAN, CAN FD"

Output Arguments
chans — Information on available CAN FD devices
table

Information on available CAN FD device channels, returned as a table. To access specific elements,
you can index into the table.

See Also
Functions
canFDChannel

 canFDChannelList

13-29

Introduced in R2018b

13 Functions

13-30

canFDMessage
Build CAN FD message based on user-specified structure

Syntax
message = canFDMessage(id,extended,datalength)
message = canFDMessage(candb,messagename)

Description
message = canFDMessage(id,extended,datalength) creates a CAN FD message object from
the raw message information.

message = canFDMessage(candb,messagename) creates a message using the message definition
in the specified database. Because ProtocolMode is defined in the message database, you cannot
specify it as an argument to canFDMessage when using a database.

Examples

Create a CAN FD Message with Database Definitions

Create a CAN FD message using the definitions of a CAN database.

candb = canDatabase(string([(matlabroot) '\examples\vnt\CANFDExample.dbc']));
message3 = canFDMessage(candb,'CANFDMessage')

message3 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 1
 Extended: 0
 Name: 'CANFDMessage'

 Data Details
 Timestamp: 0
 Data: [1x48 uint8]
 Signals: []
 Length: 48
 DLC: 14

 Protocol Flags
 BRS: 1
 ESI: 0
 Error: 0

 Other Information
 Database: [1×1 can.Database]

 canFDMessage

13-31

 UserData: []

Create a CAN FD Message

Create a CAN FD message with a standard ID format.

message2 = canFDMessage(1000,false,64)

message2 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 1000
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0
 Data: [1×64 uint8]
 Signals: []
 Length: 64
 DLC: 15

 Protocol Flags
 BRS: 0
 ESI: 0
 Error: 0

 Other Information
 Database: []
 UserData: []

Input Arguments
id — ID of message
numeric value

ID of the message, specified as a numeric value. If this ID used an extended format, set the
extended argument true.
Example: 2500
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Specify if message ID is extended
true | false

Specifies whether the message ID is of standard or extended type, specified as true or false. The
logical value true indicates that the ID is of extended type (29 bits), false indicates standard type
(11 bits).
Example: true

13 Functions

13-32

Data Types: logical

datalength — Length of message data
integer value 0 to 64

The length of the message data, specified as an integer value of 0 through 64, inclusive.
Example: 64
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

candb — CAN database
CAN database object

CAN database, specified as a database object. The database contains the message definition.
Example: candb = canDatabase('CANDatabase.dbc')

messagename — Name of message
char vector | string

The name of the message definition in the database, specified as a character vector or string.
Example: 'VehicleDataMulti'
Data Types: char | string

Output Arguments
message — CAN FD message
CAN message object

CAN FD message, returned as a CAN message object, with the following properties:

Property Purpose
BRS CAN FD bit rate switch, as true or false
Data Data of CAN message or J1939 parameter group
Database CAN database information
DLC Data length code value
Error CAN message error frame, as true or false
ESI CAN FD error state indicator, as true or false
Extended True of false indication of extended CAN

Identifier type
ID Identifier for CAN message
Length Message length in bytes
Name CAN message name
ProtocolMode Protocol mode defined as CAN or CAN FD
Remote Specify if CAN message is remote frame
Signals Physical signals defined in CAN message or J1939

parameter group

 canFDMessage

13-33

Property Purpose
Timestamp Message received timestamp
UserData Custom data

See Also
Functions
attachDatabase | canDatabase | extractAll | extractRecent | extractTime | pack | unpack

Introduced in R2018b

13 Functions

13-34

canFDMessageBusType
Create Simulink CAN FD message bus

Syntax
canFDMessageBusType
canFDMessageBusType(modelName)

Description
canFDMessageBusType creates a Simulink CAN FD message bus object named
CAN_FD_MESSAGE_BUS in the base workspace. The values of the object properties are read-only, but
useful for showing the structure of its data.

canFDMessageBusType(modelName) creates a Simulink CAN FD message bus object named
CAN_FD_MESSAGE_BUS in the data dictionary associated with the specified model, modelName.

Examples

Create CAN FD Message Bus Object

Create and view the properties of a Simulink CAN FD message bus object.

canFDMessageBusType
CAN_FD_MESSAGE_BUS

CAN_FD_MESSAGE_BUS =

 Bus with properties:

 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''
 Alignment: -1
 Elements: [12×1 Simulink.BusElement]

View the Elements properties of the bus.

CAN_FD_MESSAGE_BUS.Elements

ans =

 12×1 BusElement array with properties:

 Min
 Max
 DimensionsMode
 SampleTime
 Description
 Unit
 Name

 canFDMessageBusType

13-35

 DataType
 Complexity
 Dimensions

Input Arguments
modelName — Name of model
char vector | string

Name of model, specified as a character vector or string, whose data dictionary is updated with the
bus object.
Example: 'CANFDModel'
Data Types: char | string

See Also
Blocks
CAN FD Pack | CAN FD Receive | CAN FD Replay

Topics
“Create Custom CAN Blocks” on page 10-15
“Composite Signals” (Simulink)

Introduced in R2018a

13 Functions

13-36

canFDMessageReplayBlockStruct
Convert CAN FD messages for use as CAN Replay block output

Syntax
msgstructofarrays = canFDMessageReplayBlockStruct(msgs)

Description
msgstructofarrays = canFDMessageReplayBlockStruct(msgs) formats the specified CAN
FD messages for use with the CAN FD Replay block. The CAN FD Replay block requires a specific
format for CAN FD messages, defined by a structure of arrays containing the ID, Extended, Data, and
other message elements.

Use this function to assign the formatted message structure to a variable. Then save that variable to a
MAT-file. The CAN FD Replay block mask allows selection of this MAT file and the variable within it,
to replay the messages in a Simulink model.

Examples

Create Message Structure for CAN FD Replay Block

Create a message structure for the CAN FD Replay block, and save it to a MAT-file.

canMsgs = canFDMessageReplayBlockStruct(messages);
save('ReplayBlockMessages.mat','canMsgs');

Input Arguments
msgs — Original CAN FD messages
CAN message objects | CAN FD message timetable

Original CAN FD messages, specified as a CAN FD message timetable or an array of CAN message
objects.

Output Arguments
msgstructofarrays — Formatted CAN FD messages
struct

Formatted CAN FD messages, returned as structure of arrays containing the ID, Extended, Data, and
other elements of the messages.

See Also
Functions
canFDMessageTimetable | save

 canFDMessageReplayBlockStruct

13-37

Blocks
CAN Replay

Introduced in R2018b

13 Functions

13-38

canFDMessageTimetable
Convert CAN or CAN FD messages into timetable

Syntax
msgtimetable = canFDMessageTimetable(msg)
msgtimetable = canFDMessageTimetable(msg,database)

Description
msgtimetable = canFDMessageTimetable(msg) creates a CAN FD message timetable from an
existing CAN FD message timetable, an array of CAN message objects, or a CAN FD message
structure from the CAN FD Log block. The output message timetable contains the raw message
information (ID, Extended, Data, etc.) from the messages. If CAN message objects are input which
contain decoded information, that decoding is retained in the CAN FD message timetable.

msgtimetable = canFDMessageTimetable(msg,database) uses the database to decode the
message names and signals for the timetable along with the raw message information. Specify
multiple databases in an array to decode message names and signals in the timetable within a single
call.

The input msg can also be a timetable of data created by using read on an mdfDatastore object. In
this case, the function converts the timetable of ASAM standard logging format data to a Vehicle
Network Toolbox CAN FD message timetable.

Examples

Convert Log Block Output to Timetable

Convert log block output to a CAN FD message timetable.

 load LogBlockOutput.mat;
 db = canDatabase('myDatabase.dbc');
 msgTimetable = canFDMessageTimetable(canMsgs,db);

Convert Message Objects to CAN FD Message Timetable

Convert an array of CAN message objects to a CAN FD message timetable.

msgTimetable = canFDMessageTimetable(canMsgs);

Decode Message Timetable with Database

Decode an existing CAN FD message timetable with a database.

db = canDatabase('myDatabase.dbc')
msgTimetable = canFDMessageTimetable(msgTimetable,db)

 canFDMessageTimetable

13-39

The result is returned to the original timetable variable.

Convert an ASAM MDF Message Timetable

Convert an existing ASAM format message timetable, and decode using a database.

m = mdf('CANandCANFD.MF4');
db = canDatabase('CustomerDatabase.dbc');
mdfData = read(m);
msgTimetable = canFDMessageTimetable(mdfData{2},db);

Compare the two timetables.

mdfData{2}(1:4,1:6)

ans =

 4×6 timetable

 Time CAN_DataFrame_BusChannel CAN_DataFrame_FlagsEx CAN_DataFrame_Dir CAN_DataFrame_SingleWire CAN_DataFrame_WakeUp CAN_DataFrame_SRR
 ___________ ________________________ _____________________ _________________ ________________________ ____________________ _________________

 0.30022 sec 1 2.1095e+06 1 0 0 0
 0.45025 sec 1 2.0972e+06 1 0 0 0
 0.60022 sec 1 2.1095e+06 1 0 0 0
 0.75013 sec 1 2.1095e+06 1 0 0 0

msgTimetable(1:4,1:8)

ans =

 4×8 timetable

 Time ID Extended Name ProtocolMode Data Length DLC Signals
 ___________ ____ ________ ____ ____________ ____________ ______ ___ ____________

 0.30022 sec 768 false '' 'CAN FD' [1×64 uint8] 64 15 [0×0 struct]
 0.45025 sec 1104 false '' 'CAN' [1×8 uint8] 8 8 [0×0 struct]
 0.60022 sec 768 false '' 'CAN FD' [1×64 uint8] 64 15 [0×0 struct]
 0.75013 sec 1872 false '' 'CAN FD' [1×24 uint8] 24 12 [0×0 struct]

Input Arguments
msg — Raw CAN messages
CAN FD message timetable, array, or structure

Raw CAN messages, specified as a CAN FD message timetable, an array of CAN message objects, a
CAN message structure from the CAN log block, or an asam.MDF object..
Example: canFDMessage()

database — CAN database
database object

CAN database, specified as a database object.
Example: database = canDatabase('CANDatabase.dbc')

Output Arguments
msgtimetable — CAN FD message timetable
timetable

13 Functions

13-40

CAN FD messages returned as a timetable.

See Also
Functions
canDatabase | canSignalTimetable | mdfDatastore | read (MDFDatastore)

Introduced in R2018b

 canFDMessageTimetable

13-41

canHWInfo
(To be removed) Information on available CAN devices

Note canHWInfo will be removed in a future release. Use canChannelList instead.

Syntax
hw = canHWInfo

Description
hw = canHWInfo returns information about CAN devices, and displays the information organized by
vendors and channels.

Examples

Detect CAN Devices

Detect the available CAN devices and investigate a device channel.

hw = canHWInfo

hw =

CAN Devices Detected

Vendor	Device	Channel	Serial Number	Constructor...
 MathWorks | Virtual 1 | 1 | 0 |canChannel(...
 MathWorks | Virtual 1 | 2 | 0 |canChannel(...
 Kvaser | Virtual 1 | 1 | 0 |canChannel(...
 Kvaser | Virtual 1 | 2 | 0 |canChannel(...
 NI | Virtual (CAN256) | 1 | 0 |canChannel(...
 NI | Virtual (CAN257) | 2 | 0 |canChannel(...
 NI | Series 847X Sync USB (CAN0)| 1 | 12345C |canChannel(...
 NI | 9862 CAN/HS (CAN1) | 1 | 12345A |canChannel(...
 Vector | Virtual 1 | 1 | 0 |canChannel(...
 Vector | Virtual 1 | 2 | 0 |canChannel(...
 PEAK-System | PCAN-USB Pro (PCAN_USBBUS1)| 1 | 0 |canChannel(...
 PEAK-System | PCAN-USB Pro (PCAN_USBBUS2)| 2 | 0 |canChannel(...

View the Vector properties to see its VendorDriverVersion.

v = hw.VendorInfo(4)

v =

 VendorInfo with properties:

 VendorName: 'Vector'
 VendorDriverDescription: 'XL Driver Library'
 VendorDriverVersion: '9000022'
 ChannelInfo: [1×2 can.vector.ChannelInfo]

13 Functions

13-42

View the first Vector channel information.

c1 = hw.VendorInfo(4).ChannelInfo(1)

c1 =

 ChannelInfo with properties:

 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ObjectConstructor: 'canChannel('Vector','Virtual 1',1)'

Output Arguments
hw — CAN devices detected
can.HardwareInfo object

CAN devices detected, returned as a can.HardwareInfo object. You can programmatically access
vendor and channel information by indexing into the output object VendorInfo property.

See Also
Functions
canChannel | canChannelList

Introduced in R2009a

 canHWInfo

13-43

canMessage
Build CAN message based on user-specified structure

Syntax
message = canMessage(id,extended,datalength)
message = canMessage(id,extended,datalength,'ProtocolMode','CAN FD')
message = canMessage(candb,messagename)

Description
message = canMessage(id,extended,datalength) creates a CAN message object from the
raw message information.

message = canMessage(id,extended,datalength,'ProtocolMode','CAN FD') creates a
CAN FD message. The default ProtocolMode is standard 'CAN'.

message = canMessage(candb,messagename) creates a message using the message definition in
the specified database. Because ProtocolMode is defined in the message database, you cannot
specify it as an argument to canMessage when using a database.

Examples

Create a CAN Message

Create a CAN message with an extended ID format.

message1 = canMessage(2500,true,4)

message1 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 5000
 Extended: 1
 Name: ''

 Data Details
 Timestamp: 0
 Data: [0 0 0 0]
 Signals: []
 Length: 4

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information

13 Functions

13-44

 Database: []
 UserData: []

Create a CAN FD Message

Create a CAN FD message with a standard ID format.

message2 = canMessage(1000,false,64,'ProtocolMode','CAN FD')

message2 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 1000
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0
 Data: [1×64 uint8]
 Signals: []
 Length: 64
 DLC: 15

 Protocol Flags
 BRS: 0
 ESI: 0
 Error: 0

 Other Information
 Database: []
 UserData: []

Create a Message with Database Definitions

Create a message using the definitions of a CAN database.

candb = canDatabase(string([(matlabroot) '\examples\vnt\VehicleInfo.dbc']))
message3 = canMessage(candb,'WheelSpeeds')

message3 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 1200
 Extended: 0
 Name: 'WheelSpeeds'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]

 canMessage

13-45

 Signals: [1×1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1×1 can.Database]
 UserData: []

Input Arguments
id — ID of message
numeric value

ID of the message, specified as a numeric value. If this ID used an extended format, set the
extended argument true.
Example: 2500
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Indicate if message ID is extended
true | false

Indicates whether the message ID is of standard or extended type, specified as true or false. The
logical value true indicates that the ID is of extended type, false indicates standard type.
Example: true
Data Types: logical

datalength — Length of message data
integer value 0-8

The length of the message data, specified as an integer value of 0 through 8, inclusive.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

candb — CAN database
CAN database object

CAN database, specified as a database object. The database contains the message definition.
Example: candb = canDatabase('J1939.dbc')

messagename — Name of message
char vector | string

The name of the message definition in the database, specified as a character vector or string.
Example: 'VehicleDataMulti'
Data Types: char | string

13 Functions

13-46

Output Arguments
message — CAN message
CAN message object

CAN message, returned as a CAN message object, with the following properties:

Property Purpose
BRS CAN FD bit rate switch, as true or false
Data Data of CAN message or J1939 parameter group
Database CAN database information
DLC Data length code value
Error CAN message error frame, as true or false
ESI CAN FD error state indicator, as true or false
Extended True of false indication of extended CAN

Identifier type
ID Identifier for CAN message
Length Message length in bytes
Name CAN message name
ProtocolMode Protocol mode defined as CAN or CAN FD
Remote Specify if CAN message is remote frame
Signals Physical signals defined in CAN message or J1939

parameter group
Timestamp Message received timestamp
UserData Custom data

See Also
Functions
attachDatabase | canDatabase | extractAll | extractRecent | extractTime | pack | unpack

Introduced in R2009a

 canMessage

13-47

canMessageBusType
Create Simulink CAN message bus

Syntax
canMessageBusType
canMessageBusType(modelName)

Description
canMessageBusType creates a Simulink CAN message bus object named CAN_MESSAGE_BUS in the
base workspace. The values of the object properties are read-only, but useful for showing the
structure of its data.

canMessageBusType(modelName) creates a Simulink CAN message bus object of type
CAN_MESSAGE_BUS in the data dictionary associated with the specified model, modelName.

Examples

Create CAN Message Bus Object

Create and view the properties of a Simulink CAN message bus object.

canMessageBusType
CAN_MESSAGE_BUS

CAN_MESSAGE_BUS =

 Bus with properties:

 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''
 Alignment: -1
 Elements: [7×1 Simulink.BusElement]

View the Elements properties.

CAN_MESSAGE_BUS.Elements

ans =

 7×1 BusElement array with properties:

 Min
 Max
 DimensionsMode
 SampleTime
 Description
 Unit
 Name

13 Functions

13-48

 DataType
 Complexity
 Dimensions

Input Arguments
modelName — Name of model
char vector | string

Name of model, specified as a character vector or string, whose data dictionary is updated with the
bus object.
Example: 'CANModel'
Data Types: char | string

See Also
Blocks
CAN Pack | CAN Receive | CAN Replay

Topics
“Create Custom CAN Blocks” on page 10-15
“Composite Signals” (Simulink)

Introduced in R2017b

 canMessageBusType

13-49

canMessageImport
Import CAN messages from third-party log file

Syntax
message = canMessageImport(file,vendor)
message = canMessageImport(file,vendor,candb)
message = canMessageImport(___ ,'OutputFormat','timetable')

Description
message = canMessageImport(file,vendor) imports CAN messages from the log file, file,
from a third-party vendor, vendor. All the messages in the log file are imported as an array of CAN
message objects.

After importing, you can analyze, transmit, or replay these messages.

canMessageImport assumes that the information in the imported log file is in a hexadecimal format,
and that the timestamps in the imported log file are absolute values.

message = canMessageImport(file,vendor,candb) applies the information in the specified
database to the imported CAN log messages.

To import Vector log files with symbolic message names, specify an appropriate database file.

message = canMessageImport(___ ,'OutputFormat','timetable') returns a timetable of
messages. This is the recommended output format for optimal performance and representation of
CAN messages within MATLAB.

Examples

Import Raw Messages

Import raw messages from a log file.
message = canMessageImport('MsgLog.asc','Vector','OutputFormat','timetable');

Import Messages with Database

Import messages from a log file, using database information for physical messages.
candb = canDatabase('myDatabase.dbc');
message = canMessageImport('MsgLog.txt','Kvaser',candb,'OutputFormat','timetable');

Input Arguments
file — Name of CAN message log file
char vector | string

13 Functions

13-50

Name of CAN message log file, specified as a character vector or string.
Example: 'MsgLog.asc'
Data Types: char | string

vendor — Name of vendor
char vector | string

Name of vendor, specified as a character vector or string, whose CAN message log file you are
importing from.

You can import message logs only in certain file formats: ASCII files from Vector, and text files from
Kvaser.
Example: 'Vector'
Data Types: char | string

candb — CAN database
database object

CAN database, specified as a database object. This is the database whose information is applied to
the imported log file messages.
Example: candb = canDatabase('CANdb.dbc')

Output Arguments
message — Imported messages
array of CAN message objects | timetable

Imported messages, returned as an array of CAN message objects or as a timetable of messages.

See Also
Functions
canDatabase | receive | transmit

Introduced in R2010b

 canMessageImport

13-51

canMessageReplayBlockStruct
Convert CAN messages for use as CAN Replay block output

Syntax
msgstructofarrays = canMessageReplayBlockStruct(msgs)

Description
msgstructofarrays = canMessageReplayBlockStruct(msgs) formats specified CAN
messages for use with the CAN Replay block. The CAN Replay block requires a specific format for
CAN messages, defined by a structure of arrays containing the ID, Extended, Data, and other
message elements.

Use this function to assign the formatted message structure to a variable. Then save this variable to a
MAT-file. The CAN Replay block mask allows selection of this MAT file and the variable within it, to
define the messages to replay in a Simulink model.

Examples

Create CAN Replay Block Message Structure

Create a message structure for the CAN Replay block, and save it to a MAT-file.

canMsgs = canMessageReplayBlockStruct(messages);
save('ReplayBlockMessages.mat','canMsgs');

Input Arguments
msgs — Original CAN messages
CAN message objects | CAN message timetable

Original CAN messages, specified as a CAN message timetable or an array of CAN message objects.

Output Arguments
msgstructofarrays — Formatted CAN messages
struct

Formatted CAN messages, returned as structure of arrays containing the ID, Extended, Data, and
other elements of the messages.

See Also
Functions
canMessageTimetable | save

13 Functions

13-52

Blocks
CAN Replay

Introduced in R2017a

 canMessageReplayBlockStruct

13-53

canMessageTimetable
Convert CAN messages into timetable

Syntax
msgtimetable = canMessageTimetable(msg)
msgtimetable = canMessageTimetable(msg,database)

Description
msgtimetable = canMessageTimetable(msg) creates a CAN message timetable from existing
raw messages. The output message timetable contains the raw message information (ID, Extended,
Data, etc.) from the messages. If CAN message objects are input which contain decoded information,
that decoding is retained in the CAN message timetable. A timetable of CAN message data can often
provide better performance than using CAN message objects.

msgtimetable = canMessageTimetable(msg,database) uses the database to decode the
message names and signals for the timetable along with the raw message information. Specify
multiple databases in an array to decode message names and signals in the timetable within a single
call.

The input msg can also be a timetable of data created by using read on an mdf object. In this case,
the function converts the timetable of ASAM standard logging format data to a Vehicle Network
Toolbox CAN message timetable.

Examples

Convert Log Block Output to Timetable

Convert log block output to a CAN message timetable.

 load LogBlockOutput.mat
 db = canDatabase('myDatabase.dbc')
 msgTimetable = canMessageTimetable(canMsgs,db)

Convert CAN Message Objects to Timetable

Convert legacy CAN message objects to a CAN message timetable.

msgTimetable = canMessageTimetable(canMsgs);

Decode Message Timetable with Database

Decode an existing CAN message timetable with a database.

13 Functions

13-54

db = canDatabase('myDatabase.dbc')
msgTimetable = canMessageTimetable(msgTimetable,db)

Convert an ASAM MDF Message Timetable

Convert an existing ASAM format message timetable, and decode using a database.

m = mdf('mdfFiles\CANonly.MF4');
db = canDatabase('dbFiles\dGenericVehicle.dbc');
mdfData = read(m);
msgTimetable = canMessageTimetable(mdfData{1},db);

Compare the two timetables.

 mdfData{1}(1:4,1:6)

ans =

 4×6 timetable

 Time CAN_DataFrame_DataLength CAN_DataFrame_WakeUp CAN_DataFrame_SingleWire CAN_DataFrame_IDE CAN_DataFrame_ID CAN_DataFrame_Flags
 ____________ ________________________ ____________________ ________________________ _________________ ________________ ___________________

 0.019968 sec 4 0 0 0 100 0
 0.029964 sec 4 0 0 0 100 0
 0.039943 sec 4 0 0 0 100 0
 0.049949 sec 4 0 0 0 100 0

msgTimetable(1:4,1:6)

ans =

 4×6 timetable

 Time ID Extended Name Data Length Signals
 ____________ ___ ________ ____ ___________ ______ ____________

 0.019968 sec 100 false '' [1×4 uint8] 4 [0×0 struct]
 0.029964 sec 100 false '' [1×4 uint8] 4 [0×0 struct]
 0.039943 sec 100 false '' [1×4 uint8] 4 [0×0 struct]
 0.049949 sec 100 false '' [1×4 uint8] 4 [0×0 struct]

Input Arguments
msg — CAN message data
CAN message timetable, array, or structure

CAN message data, specified as a CAN message timetable, an array of CAN message objects, or a
CAN message structure from the CAN log block.

database — CAN database
database handle

CAN database, specified as a database handle.

Output Arguments
msgtimetable — CAN message timetable
timetable

CAN messages returned as a timetable.

 canMessageTimetable

13-55

See Also
Functions
canDatabase | canSignalTimetable | mdf

Introduced in R2017a

13 Functions

13-56

canSignalImport
Import CAN log file into decoded signal timetables

Syntax
sigtimetable = canSignalImport(file,vendor,database)
sigtimetable = canSignalImport(file,vendor,database,msgnames)

Description
sigtimetable = canSignalImport(file,vendor,database) imports a CAN message log file
from the specified vendor directly into decoded signal value timetables using the provided database.
The function returns a structure with a field for each unique message in the timetable. Each field
value is a timetable of all the signals in all instances of that message. Use this form of syntax to
convert an entire set of messages in a single function call.

sigtimetable = canSignalImport(file,vendor,database,msgnames) returns signal
timetables for only the messages specified by msgnames, which can specify one or more message
names. Use this syntax form to import signals from only a subset of messages.

Examples

Import Signals from Log for All Messages

Create signal timetables from all messages in a log file.

db = canDatabase('MyDatabase.dbc');
sigtimetable = canSignalImport('MsgLog.asc','Vector',db);

Import Signals from Log for Specified Messages

Create signal timetables from specified messages in a log file.

db = canDatabase('MyDatabase.dbc');
sigtimetable1 = canSignalImport('MsgLog.asc','Vector',db,'Message1');
sigtimetable2 = canSignalImport('MsgLog.asc','Vector',db,{'Message1','Message2'});

Input Arguments
file — CAN message log file
character vector | string

CAN message log file, specified as a character vector or string.
Example: 'MyDatabase.dbc'
Data Types: char | string

 canSignalImport

13-57

vendor — Vendor file format
'Kvaser' | 'Vector'

Vendor file format, specified as a character vector or string. The supported file formats are those
defined by Vector and Kvaser.
Example: 'Vector'
Data Types: char | string

database — CAN database
database handle

CAN database, specified as a database handle.

msgnames — Message names
char | string | cell

Message names, specified as a character vector, string, or array.
Example: 'message1'
Data Types: char | string | cell

Output Arguments
sigtimetable — CAN signals
structure

CAN signals, returned as a structure. The structure field names correspond to the messages of the
input, and each field value is a timetable of CAN signals.
Data Types: struct

See Also
Functions
canDatabase | canMessageImport | canSignalTimetable

Introduced in R2017a

13 Functions

13-58

canSignalTimetable
Create CAN signal timetable from CAN message timetable

Syntax
sigtimetable = canSignalTimetable(msgtimetable)
sigtimetable = canSignalTimetable(msgtimetable,msgnames)

Description
sigtimetable = canSignalTimetable(msgtimetable) converts a timetable of CAN message
information into individual timetables of signal values. The function returns a structure with a field
for each unique message in the timetable. Each field value is a timetable of all the signals in that
message. Use this syntax form to convert an entire set of messages in a single function call.

sigtimetable = canSignalTimetable(msgtimetable,msgnames) returns signal timetables
for only the messages specified by msgnames, which can specify one or more message names. Use
this syntax form to quickly convert only a subset of messages into signal timetables.

Examples

Create CAN Signal Timetables from All Messages

Create CAN signal timetables from all messages in a CAN message timetable.

sigTable = canSignalTimetable(msgTimetable);

Create CAN Signal Timetable from Specified Messages

Create CAN signal timetables from only specified messages in a CAN message timetable.

sigTable1 = canSignalTimetable(msgTimetable,'Message1');
sigTable2 = canSignalTimetable(msgTimetable,{'Message1','Message2'});

Input Arguments
msgtimetable — CAN message timetable
timetable

CAN messages, specified as a timetable.

msgnames — Message names
char | string | cell

Message names, specified as a character vector, string, or array.
Data Types: char | string | cell

 canSignalTimetable

13-59

Output Arguments
sigtimetable — CAN signals
structure

CAN signals, returned as a structure. The structure field names correspond to the messages of the
input, and each field value is a timetable of CAN signals.
Data Types: struct

See Also
Functions
canMessageTimetable | canSignalImport

Introduced in R2017a

13 Functions

13-60

canSupport
Generate technical support log

Syntax
canSupport

Description
canSupport generates diagnostic information for all installed CAN devices and saves the results to
the text file cansupport.txt in the current working folder. The MATLAB Editor opens the file for
you to view.

For online support, see the Product Resources section of the Vehicle Network Toolbox web page.

Examples

Generate Support Log

Generate a technical support log file and view it in the MATLAB editor.

canSupport

See Also
Functions
canChannelList

External Websites
Vehicle Network Toolbox

Introduced in R2009a

 canSupport

13-61

https://www.mathworks.com/products/vehicle-network.html
https://www.mathworks.com/products/vehicle-network.html

canTool
Open Vehicle CAN Bus Monitor

Syntax
canTool

Description
canTool starts the Vehicle CAN Bus Monitor, which displays live CAN message traffic. This app
allows you to view message traffic using a selected CAN device and channel, and to save messages to
a log file.

Examples

Open Vehicle CAN Bus Monitor

Open the Vehicle CAN Bus Monitor app.

canTool

See Also
Apps
Vehicle CAN Bus Monitor

Topics
“Using the Vehicle CAN Bus Monitor” on page 5-7
“Vehicle CAN Bus Monitor” on page 5-2

Introduced in R2009a

13 Functions

13-62

CAN.VendorInfo class
Package: CAN

Display available device vendor information

Note can.VendorInfo will be removed in a future release. Use canChannelList instead.

Syntax
info = canHWInfo
info.VendorInfo(index)

Description
info = canHWInfo creates an object with information of all available CAN hardware devices.

info.VendorInfo(index) displays available vendor information obtained from canHWInfo for the
device with the specified index.

Input Arguments
index — Device channel index
numeric value

Device channel index specified as a numeric value.

Properties
VendorName

Name of the device vendor.

VendorDriverDescription

Description of the device driver installed for this vendor.

VendorDriverVersion

Version of the device driver installed for this vendor.

ChannelInfo

Information on the device channels available for this vendor.

Examples

 CAN.VendorInfo class

13-63

Examine Kvaser Vendor Information

Get information on installed CAN devices.

info = canHWInfo

info =

CAN Devices Detected

Vendor	Device	Channel	Serial Number	Constructor
 Kvaser | Virtual 1 | 1 | 0 | canChannel('Kvaser', 'Virtual 1', 1)
 Kvaser | Virtual 1 | 2 | 0 | canChannel('Kvaser', 'Virtual 1', 2)
 Vector | Virtual 1 | 1 | 0 | canChannel('Vector', 'Virtual 1', 1)
 Vector | Virtual 1 | 2 | 0 | canChannel('Vector', 'Virtual 1', 2)

Use GET on the output of canHWInfo for more information.

Parse the objects VendorInfo class.

info.VendorInfo

ans =

 1x2 heterogeneous VendorInfo (VendorInfo, VendorInfo) array with properties:

 VendorName
 VendorDriverDescription
 VendorDriverVersion
 ChannelInfo

See Also
Functions
CAN.ChannelInfo | canHWInfo

13 Functions

13-64

cdfx
Access information contained in CDFX-file

Syntax
cdfxObj = cdfx(CDFXfile)

Description
cdfxObj = cdfx(CDFXfile) creates an asam.cdfx object and imports the calibration data from
the specified CDFX-file.

Examples

Access CDFX-File

Create an asam.cdfx object containing the calibration data from a CDFX-file.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx')

cdfxObj =

 CDFX with properties:

 Name: "AllCategories_VCD.cdfx"
 Path: "c:\DataFiles\AllCategories_VCD.cdfx"
 Version: "CDF20"

Input Arguments
CDFXfile — Calibration data format CDFX-file
char | string

Calibration data format CDFX-file, specified as a character vector or string. CDFXFile can specify the
file name in the current folder, or the full or relative path to the CDFX-file. For restrictions on the file
content, see “File Format Limitations” on page 11-5.
Example: 'ASAMCDFExample.cdfx'
Data Types: char | string

Output Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, returned as an asam.cdfx object. Use the object to access the calibration data.

 cdfx

13-65

See Also
Functions
getValue | instanceList | setValue | systemList | write

Introduced in R2019a

13 Functions

13-66

channelList
Information on available MDF groups and channels

Syntax
chans = channelList(mdfobj)
channelList(mdfObj,chanName)
channelList(mdfObj,chanName,'ExactMatch',true)

Description
chans = channelList(mdfobj) returns a table of information about channels and groups in the
specified MDF-file.

channelList(mdfObj,chanName) searches the MDF-file to generate a list of channels matching
the specified channel name. The search by default is case-insensitive and identifies partial matches. A
table is returned containing information about the matched channels and the containing channel
groups. If no matches are found, an empty table is returned.

channelList(mdfObj,chanName,'ExactMatch',true) searches the channels for an exact
match, including case sensitivity. This is useful if a channel name is a substring of other channel
names.

Examples

View Available MDF Channels

View all available MDF channels.

mdfObj = mdf('File01.mf4');
chans = channelList(mdfObj)

chans =

 4×9 table

 ChannelName ChannelGroupNumber ChannelGroupNumSamples
 ____________________________________ __________________ ______________________

 "Float_32_LE_Offset_64" 2 10000
 "Float_64_LE_Master_Offset_0" 2 10000
 "Sigend_Int16_LE_Offset_32" 1 10000
 "Unsigend_UInt32_LE_Master_Offset_0" 1 10000

View Specific MDF Channels

Filter on channel names.

chans = channelList(mdfObj,'Float')

chans =

 channelList

13-67

 2×9 table

 ChannelName ChannelGroupNumber ChannelGroupNumSamples
 _____________________________ __________________ ______________________

 "Float_32_LE_Offset_64" 2 10000
 "Float_64_LE_Master_Offset_0" 2 10000

chans = channelList(mdfObj,'Float','ExactMatch',true)

chans =

 0×9 empty table

Input Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, specified as an MDF-file object.
Example: mdf('File01.mf4')

chanName — Name of channel
char vector | string

Name of channel, specified as a character vector or string. By default, case-insensitive and partial
matches are returned.
Example: 'Channel1'
Data Types: char | string

Output Arguments
chans — Information on available MDF channels
table

Information on available MDF channels, returned as a table. To access specific elements, you can
index into the table.

See Also
Functions
mdf

Introduced in R2018b

13 Functions

13-68

configBusSpeed
Set bit timing rate of CAN channel

Syntax
configBusSpeed(canch,busspeed)
configBusSpeed(canch,busspeed,SJW,TSeg1,TSeg2,numsamples)

configBusSpeed(canch,arbbusspeed,databusspeed)
configBusSpeed(canch,arbbusspeed,arbSJW,arbTSeg1,arbTSeg2,databusspeed,
dataSJW,dataTSeg1,dataTSeg2)
configBusSpeed(canch,clockfreq,arbBRP,arbSJW,arbTSeg1,arbTSeg2,dataBRP,
dataSJW,dataTSeg1,dataTSeg2)

Description
configBusSpeed(canch,busspeed) sets the speed of the CAN channel in a direct form that uses
baseline bit timing calculation factors.

• Unless you have specific timing requirements for your CAN connection, use the direct form of
configBusSpeed. Also note that you can set the bus speed only when the CAN channel is offline.
The channel must also have initialization access to the CAN device.

• Synchronize all nodes on the network for CAN to work successfully. However, over time, clocks on
different nodes will get out of sync, and must resynchronize. SJW specifies the maximum width (in
time) that you can add to TSeg1 (in a slower transmitter), or subtract from TSeg2 (in a faster
transmitter) to regain synchronization during the receipt of a CAN message.

configBusSpeed(canch,busspeed,SJW,TSeg1,TSeg2,numsamples) sets the speed of the CAN
channel canch to busspeed using the specified bit timing calculation factors to control the timing in
an advanced form.

Note Before you can start a channel to transmit or receive CAN FD messages, you must configure its
bus speed.

configBusSpeed(canch,arbbusspeed,databusspeed) sets the arbitration and data bus speeds
of canch using default bit timing calculation factors for CAN FD. This syntax supports NI and
MathWorks virtual devices.

configBusSpeed(canch,arbbusspeed,arbSJW,arbTSeg1,arbTSeg2,databusspeed,
dataSJW,dataTSeg1,dataTSeg2) sets the data and arbitration bus speeds of canch using the
specified bit timing calculation factors in an advanced form for CAN FD. This syntax supports Kvaser
and Vector devices.

configBusSpeed(canch,clockfreq,arbBRP,arbSJW,arbTSeg1,arbTSeg2,dataBRP,
dataSJW,dataTSeg1,dataTSeg2) sets the data and arbitration bus speeds of canch using the
specified bit timing calculation factors in an advanced form for CAN FD. This syntax supports PEAK-
System devices.

 configBusSpeed

13-69

Examples

Configure Bus Speed

Configure the bus speed using baseline bit timing calculation.

Configure for CAN.

canch = canChannel('Vector','CANCaseXL 1',1);
configBusSpeed(canch,250000)

Configure CAN FD on MathWorks virtual channel.
canch = canChannel('MathWorks','Virtual 1',1,'ProtocolMode','CAN FD');
configBusSpeed(canch,1000000,2000000)

Configure CAN FD on National Instruments device.

canch = canChannel('NI','CAN1','ProtocolMode','CAN FD');
configBusSpeed(canch,1000000,2000000)

Specify Bit Timing Parameters

Configure the bus speed, specifying the bit timing parameters.

Configure CAN on Kvaser device.

canch = canChannel('Kvaser','USBcan Professional 1',1);
configBusSpeed(canch,500000,1,4,3,1)

Configure CAN FD on Kvaser device.

canch = canChannel('Kvaser','USBcan Pro 1',1,'ProtocolMode','CAN FD');
 configBusSpeed(canch,1e6,2,6,3,2e6,2,6,3)

Configure CAN FD on Vector device.

canch = canChannel('Vector','VN1610 1',1,'ProtocolMode','CAN FD');
configBusSpeed(canch,1e6,2,6,3,2e6,2,6,3)

Configure CAN FD on PEAK-System device.
canch = canChannel('PEAK-System','PCAN_USBBUS1','ProtocolMode','CAN FD');
configBusSpeed(canch,20,5,1,2,1,2,1,3,1)

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object.

busspeed — Bit rate for channel
double

Bit rate for channel, specified as a double. Provide the speed of the network in bits per second.

13 Functions

13-70

Example: 250000
Data Types: double

SJW — Synchronization jump width
double

Synchronization jump width, specified as a double. Define the length of a bit on the network.
Data Types: double

TSeg1 — Time segment 1
double

Time segment 1, specified as a double, which defines the section before a bit is sampled on the
network.
Data Types: double

TSeg2 — Time segment 2
double

Time segment 2, specified as a double, which defines the section after a bit is sampled on a network.
Data Types: double

numsamples — Number of samples for bit state
double

Number of samples for bit state, specified as a double. Specify the number of samples used for
determining the bit state of a network.
Data Types: double

arbbusspeed — Arbitration bit rate for channel
double

Arbitration bit rate for channel, specified as a double. Provide the speed of the network in bits per
second.
Example: 250000
Data Types: double

arbSJW — Arbitration synchronization jump width
double

Arbitration synchronization jump width, specified as a double. Define the length of a bit on the
network.
Data Types: double

arbTSeg1 — Arbitration time segment 1
double

Arbitration time segment 1, specified as a double, which defines the section before a bit is sampled
on the network.
Data Types: double

 configBusSpeed

13-71

arbTSeg2 — Arbitration time segment 2
double

Arbitration time segment 2, specified as a double, which defines the section after a bit is sampled on
a network.
Data Types: double

databusspeed — Data bit rate for channel
double

Data bit rate for channel, specified as a double. Provide the speed of the network in bits per second.
Example: 250000
Data Types: double

dataSJW — Data synchronization jump width
double

Data synchronization jump width, specified as a double. Define the length of a bit on the network.
Data Types: double

dataTSeg1 — Data time segment 1
double

Data time segment 1, specified as a double, which defines the section before a bit is sampled on the
network.
Data Types: double

dataTSeg2 — Data time segment 2
double

Data time segment 2, specified as a double, which defines the section after a bit is sampled on a
network.
Data Types: double

clockfreq — Clock frequency
double

Clock frequency for channel in MHz, specified as a double.
Example: 250000
Data Types: double

arbBRP — Arbitration clock prescalar for time quantum
double

Arbitration clock prescalar for time quantum, specified as a double.
Example: 250000
Data Types: double

dataBRP — Data clock prescalar for time quantum
double

13 Functions

13-72

Data clock prescalar for time quantum, specified as a double.
Example: 250000
Data Types: double

See Also
Functions
canChannel | start

Introduced in R2009a

 configBusSpeed

13-73

configBusSpeed (J1939)
Configure bit timing of J1939 channel

Syntax
configBusSpeed(chan,busspeed)
configBusSpeed(chan,busspeed,SJW,TSeg1,TSeg2,numsamples)

Description
configBusSpeed(chan,busspeed) sets the speed of the J1939 channel chan to busspeed in a
direct form that uses default bit timing calculation factors.

Note You can set bit timing only when the channel is offline and has initialization access to the
device.

configBusSpeed(chan,busspeed,SJW,TSeg1,TSeg2,numsamples) sets the speed of the
channel using specified bit timing calculation factors.

Note Unless you have specific timing requirements provided for your network, you should use the
direct form of the function.

Examples

Set Bus Speed for Channel Directly

Use the direct form of syntax to configure a J1939 channel bus speed.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
configBusSpeed(chan,250000)

Set Bus Speed for Channel with Calculation Factors

Use the advanced form of syntax to configure a J1939 channel bus speed with specific calculation
factors.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
configBusSpeed(chan,500000,1,4,3,1)

Input Arguments
chan — J1939 channel
channel object

13 Functions

13-74

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

busspeed — Bit rate for channel
double

Bit rate for channel, specified as a double. Provide the speed of the network in bits per second.
Example: 250000
Data Types: double

SJW — Synchronization jump width
double

Synchronization Jump Width, specified as a double. Define the length of a bit on a network.
Data Types: double

TSeg1 — Time segment 1
double

Time segment 1, specified as a double, which defines the section before a bit is sampled on a
network.
Data Types: double

TSeg2 — Time segment 2
double

Time segment 2, specified as a double, which defines the section after a bit is sampled on a network.
Data Types: double

numsamples — Number of samples for bit state
double

Number of samples for bit state, specified as a double. Specify the number of samples used for
determining the bit state of a network.
Data Types: double

See Also
Functions
j1939Channel | start | stop | transmit

Introduced in R2015b

 configBusSpeed (J1939)

13-75

connect
Connect XCP channel to slave module

Syntax
connect(xcpch)

Description
connect(xcpch) creates an active connection between the XCP channel and the slave module,
enabling active messaging between the channel and the slave.

Examples

Connect to a Slave Module

Create an XCP channel connected to a Vector CAN device on a virtual channel and connect it.

Link an A2L file to and create an XCP channel with it.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel and verify that it is connected.

connect (xcpch)
isConnected(xcpch)

ans =

 1

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

See Also
Functions
readSingleValue | writeSingleValue | xcpA2L | xcpChannel

Introduced in R2013a

13 Functions

13-76

createMeasurementList
Create measurement list for XCP channel

Syntax
createMeasurementList(xcpch,resource,eventName,measurementName)
createMeasurementList(xcpch,resource,eventName,{measurementName,
measurementName,measurementName})

Description
createMeasurementList(xcpch,resource,eventName,measurementName) creates a data
stimulation list for the XCP channel with the specified event and measurement.

createMeasurementList(xcpch,resource,eventName,{measurementName,
measurementName,measurementName}) creates a data stimulation list for the XCP channel with
the specified event and list of measurements.

Examples

Create a DAQ Measurement List

Create an XCP channel connected to a Vector CAN device on a virtual channel and set up a DAQ
measurement list.

a2lfile = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1)
xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: []

Connect the channel to the slave module.

connect(xcpch)

Setup a data acquisition measurement list with the ‘10 ms’ event and 'Triangle' measurement.

createMeasurementList(xcpch, 'DAQ', '10 ms', 'Triangle');

Create a Data Stimulation List

Create an XCP channel connected to a Vector CAN device on a virtual channel and set up a STIM
measurement list.

 createMeasurementList

13-77

a2l = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1)
xcpch =
 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: []

Connect the channel to the slave module.

connect(xcpch)

Setup a data stimulation measurement list with the ‘100ms’ event and 'PWM' and 'ShiftByte'
measurements.

createMeasurementList(xcpch, 'STIM', '100ms', {'PWM','ShiftByte'});

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

resource — Measurements list type
'DAQ' | 'STIM'

Measurement list type, specified as 'DAQ' or 'STIM'.
Example: 'DAQ'
Data Types: char | string

eventName — Name of event
character vector | string

Name of event, specified as a character vector or string. The event is used to trigger the specified
measurement list. The list of available events depends on your A2L file.
Data Types: char | string

measurementName — Name of single XCP measurement
character vector | string | array

Name of a single XCP measurement, specified as a character vector or string; or a set of
measurements, specified as a cell array of character vectors or array of strings. Make sure
measurementName matches the corresponding measurement names defined in your A2L file.

See Also
freeMeasurementLists | startMeasurement | viewMeasurementLists

13 Functions

13-78

Introduced in R2013a

 createMeasurementList

13-79

discard
Discard all messages from CAN channel

Syntax
discard(canch)

Description
discard(canch) discards messages that are available to receive on the channel canch.

Examples

Discard Messages Received by a CAN Channel

Set up a CAN channel to receive messages, then discard the messages.

Create a CAN channel to receive messages and start the channel.

rxCh = canChannel('Vector','CANcaseXL 1',1);
start (rxCh)

Discard all messages in this channel.

discard(rxCh);

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, that you want to discard the messages from.
Example: canChannel('NI','CAN1')

See Also
Functions
canChannel

Introduced in R2012a

13 Functions

13-80

discard (J1939)
Discard available parameter groups on J1939 channel

Syntax
discard(chan)

Description
discard(chan) deletes all parameter groups available on the J1939 channel chan. The channel also
deactivates when it is cleared from memory.

Examples

Discard Parameter Groups on Channel

Delete all the parameter groups on a J1939 channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)

discard(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

See Also
Functions
j1939Channel | start

Introduced in R2015b

 discard (J1939)

13-81

disconnect
Disconnect from slave module

Syntax
disconnect(xcpch)

Description
disconnect(xcpch) disconnects the specified XCP channel from the slave module. Disconnecting
the channel stops active messaging between the channel and the slave module.

Examples

Disconnect an Active XCP Connection

Create an XCP channel using a CAN module, connect the channel and disconnect it from the specified
slave module.

Link an A2L file

a2l = xcpA2L('XCPSIM.a2l')

Create an XCP channel using a Vector CAN modules’s virtual channel. Check to see if channel is
connected.

xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1);

Connect the channel and check to see if channel is connected.

connect(xcpch)
isConnected(xcpch)

ans =

 1

Disconnect the channel and check if connection is active.

disconnect(xcpch)
isConnected(xcpch)

ans =

 0

Input Arguments
xcpch — XCP channel
XCP channel object

13 Functions

13-82

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

See Also
connect | isConnected | xcpA2L | xcpChannel

Introduced in R2013a

 disconnect

13-83

extractAll
Select all instances of CAN message from message array

Syntax
extracted = extractAll(message,messagename)
extracted = extractAll(message,id,extended)
[extracted,remainder] = extractAll(___)

Description
extracted = extractAll(message,messagename) parses the given array message, and
returns all instances of messages matching the specified message name.

extracted = extractAll(message,id,extended) parses the given array message, and
returns all instances of messages matching the specified ID value and type.

[extracted,remainder] = extractAll(___) assigns to extracted those messages that
match the search, and returns to remainder those that do not match.

Examples

Extract Messages by Name and ID

Extract messages by matching name and IDs.

Extract messages by name.
msgOut = extractAll(msgs,'DoorControlMsg');

Extract all messages with IDs 200 and 5000. Note that 5000 requires an extended style ID.
msgOut = extractAll(msgs,[200 5000],[false true]);

Extract messages and also return the remainder.
[msgOut,remainder] = extractAll(msgs,{'DoorControlMsg','WindowControlMsg'});

Input Arguments
message — CAN messages to parse
array of CAN message objects

CAN messages to parse, specified as an array of CAN message objects. This is the collection from
which you extract messages by specific names or IDs.

messagename — Name of message to extract
char vector | string | cell

Name of message to extract, specified as a character vector, string, or array that supports these
types.

13 Functions

13-84

Example: 'DoorControlMsg'
Data Types: char | string | cell

id — ID of message to extract
numeric value or vector

ID of message to extract, specified as a numeric value or vector. Using this argument also requires
that you specify an extended argument.
Example: [200 400]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Indication of extended ID type
true | false

Indication of extended ID type, specified as a logical true or false. Use a value true if the ID type
is extended, or false if standard. This argument is required if you specify a message ID.

If the message ID is a numeric vector, use a logical vector of the same length for extended.For
example, if you specify id and extended as [250 5000],[false true], then extractAll
returns all instances of CAN messages 250 and 5000 found within in the message array.
Example: true
Data Types: logical

Output Arguments
extracted — Extracted CAN messages
array of CAN messages

Extracted CAN messages, returned as an array of CAN message objects. These are the messages
whose name or ID matches the specified value.

remainder — Unmatched CAN messages
array of CAN messages

Unmatched CAN messages, returned as an array of CAN message objects. These are the messages in
the original set whose name or ID does not match the specified value.

See Also
Functions
extractRecent | extractTime

Introduced in R2009a

 extractAll

13-85

extractAll (J1939)
Occurrences of specified J1939 parameter groups

Syntax
extractedPGs = extractAll(pgrp,pgname)
[extractedPGs,remainderPGs] = extractAll(pgrp,pgname)

Description
extractedPGs = extractAll(pgrp,pgname) returns all parameter groups whose name occurs
in pgname.

[extractedPGs,remainderPGs] = extractAll(pgrp,pgname) also returns a parameter group
array, remainder, containing all groups from the original array not matching the specified names in
pgname.

Examples

Extract Parameter Groups

Extracts all the parameter groups with a name of 'PG1' or 'PG2'.

extractedPGs = extractAll(pgrp,{'PG1' 'PG2'})

Extract Parameter Groups and Remainder

Extract all parameter groups with a name of 'PG1' or 'PG2', and also return unmatched parameter
groups to a different array.

[extractedPGs,remainderPGs] = extractAll(parameterGroups, {'PG1' 'PG2'})

Input Arguments
pgrp — J1939 parameter group
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup or receive function to create ParameterGroup objects.

pgname — Names of J1939 parameter groups to extract
char vector | string | cell array of char vectors

Names of J1939 parameter groups to extract, specified as a character vector, string, or array of these.
Example: 'PG1'
Data Types: char | string | cell

13 Functions

13-86

Output Arguments
extractedPGs — Extracted parameter groups
array of ParameterGroup objects

Extracted parameter groups, returned as an array of ParameterGroup objects. These parameter
groups have names matching any of those specified in the pgname argument.

remainderPGs — Remainder of parameter groups
array of ParameterGroup objects

Remainder of parameter groups, returned as an array of ParameterGroup objects. These are all the
parameter groups with names not matching any of those specified in the pgname argument.

See Also
Functions
extractRecent | extractTime | j1939ParameterGroup

Introduced in R2015b

 extractAll (J1939)

13-87

extractRecent
Select most recent CAN message from array of messages

Syntax
extracted = extractRecent(message)
extracted = extractRecent(message,messagename)
extracted = extractRecent(message,id,extended)

Description
extracted = extractRecent(message) parses the given array message and returns the most
recent instance of each unique CAN message found in the array.

extracted = extractRecent(message,messagename) parses the specified array of messages
and returns the most recent instance matching the specified message name.

extracted = extractRecent(message,id,extended) parses the given array message and
returns the most recent instance of the message matching the specified ID value and type.

Examples

Extract Recent Messages

Extract most recent message for each name.
msgOut = extractRecent(msgs);

Extract recent messages for specific names.
msgOut1 = extractRecent(msgs,'DoorControlMsg');
msgOut2 = extractRecent(msgs,{'DoorControlMsg' 'WindowControlMsg'});

Extract recent messages with IDs 200 and 5000. Note that 5000 requires an extended style ID.
msgOut = extractRecent(msgs,[200 5000],[false true]);

Input Arguments
message — CAN messages to parse
array of CAN message objects

CAN messages to parse, specified as an array of CAN message objects. This is the collection from
which you extract recent messages.

messagename — Name of message to extract
char vector | string | cell

Name of message to extract, specified as a character vector, string, or array that supports these
types.
Example: 'DoorControlMsg'

13 Functions

13-88

Data Types: char | string | cell

id — ID of message to extract
numeric value or vector

ID of message to extract, specified as a numeric value or vector. Using this argument also requires
that you specify an extended argument.
Example: [200 400]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Indication of extended ID type
true | false

Indication of extended ID type, specified as a logical true or false. Use a value true if the ID type
is extended, or false if standard. This argument is required if you specify a message ID.

If the message ID is a numeric vector, use a logical vector of the same length for extended.For
example, if you specify id and extended as [250 5000],[false true], then extractAll
returns all instances of CAN messages 250 and 5000 found within in the message array.
Example: true
Data Types: logical

Output Arguments
extracted — Extracted CAN messages
array of CAN messages

Extracted CAN messages, returned as an array of CAN message objects. These are the most recent
messages matching the search criteria.

See Also
Functions
extractAll | extractTime

Introduced in R2009a

 extractRecent

13-89

extractRecent (J1939)
Occurrences of most recent J1939 parameter groups

Syntax
extractedPGs = extractRecent(pgrp)
extractedPGs = extractRecent(pgrp,pgname)

Description
extractedPGs = extractRecent(pgrp) returns the most recent instance of each unique
parameter group found in the array pgrp, based on the parameter group timestamps.

extractedPGs = extractRecent(pgrp,pgname) returns the most recent instance of parameter
groups whose names match any of those specified in pgname.

Examples

Extract Most Recent Parameter Groups

Extract the most recent of each parameter group.

extractedPGs = extractRecent(pgrp)

Extract Most Recent Parameter Groups for Specific Names

Extract the most recent of each parameter group named 'PG1' or 'PG2'.

extractedPGs = extractRecent(pgrp,{'PG1' 'PG2'})

Input Arguments
pgrp — J1939 parameter group
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup or receive function to create ParameterGroup objects.

pgname — Names of J1939 parameter groups to extract
char vector | string | array

Names of J1939 parameter groups to extract, specified as a character vector, string, or array of these.
Example: 'PG1'
Data Types: char | string | cell

13 Functions

13-90

Output Arguments
extractedPGs — Extracted parameter groups
array of ParameterGroup objects

Extracted parameter groups, returned as an array of ParameterGroup objects.

See Also
Functions
extractAll | extractTime | j1939ParameterGroup

Introduced in R2015b

 extractRecent (J1939)

13-91

extractTime
Select CAN messages occurring within specified time range

Syntax
extracted = extractTime(message,starttime,endtime)

Description
extracted = extractTime(message,starttime,endtime) parses the array message and
returns all messages with a timestamp value within the specified starttime and endtime, inclusive.

Examples

Extract Messages Within Time Range

Extract messages in first 10 seconds of channel being on.

msgRange = extractTime(msgs,0,10);

Input Arguments
message — CAN messages to parse
array of CAN message objects

CAN messages to parse, specified as an array of CAN message objects. This is the collection from
which you extract recent messages.

starttime,endtime — Time range in seconds
numeric values

Time range in seconds, specified as numeric values. The function returns messages with timestamps
that fall within the range defined by starttime and endtime, inclusive.

Specify the time range in increasing order from starttime to endtime. If you must specify the
largest available time, set endtime to Inf. The earliest time you can specify for starttime is 0.
Example: 0,10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
extracted — Extracted CAN messages
array of CAN messages

Extracted CAN messages, returned as an array of CAN message objects. These are the messages
within the specified time range.

13 Functions

13-92

See Also
Functions
extractAll | extractRecent

Introduced in R2009a

 extractTime

13-93

extractTime (J1939)
Occurrences of J1939 parameter groups within time range

Syntax
extractedPGs = extractTime(pgrp,starttime,endtime)

Description
extractedPGs = extractTime(pgrp,starttime,endtime) returns the parameter groups
found in the array pgrp, with timestamps between the specified starttime and endtime, inclusive.

Examples

Extract Parameter Groups Within Specified Time Range

Extract the parameter groups according to start and stop timestamps.

Extract parameter groups between 5 and 10.5 seconds.

extractedPGs = extractTime(pgrp,5,10.5)

Extract all parameter groups within the first minute.

extractedPGs = extractTime(pgrp,0,60)

Extract all parameter groups after 150 seconds.

extractedPGs = extractTime(pgrp,150,Inf)

Input Arguments
pgrp — J1939 parameter group
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup or receive function to create ParameterGroup objects.

starttime,endtime — Start time and end time
numeric value

Start time and end time, specified as numeric values. These arguments define the range of time from
which to extract parameter groups, inclusively. For the earliest possible starttime use 0, for the
latest possible endtime use Inf. The endtime value must be greater than the starttime value.
Data Types: double | single

13 Functions

13-94

Output Arguments
extractedPGs — Extracted parameter groups
array of ParameterGroup objects

Extracted parameter groups, returned as an array of ParameterGroup objects. These parameter
groups fall within the specified time range, inclusively.

See Also
Functions
extractAll | extractRecent | j1939ParameterGroup

Introduced in R2015b

 extractTime (J1939)

13-95

filterAllowAll
Allow all CAN messages of specified identifier type

Syntax
filterAllowAll(canch, type)

Description
filterAllowAll(canch, type) opens the filter on the specified CAN channel to allow all
messages matching the specified identifier type to pass the acceptance filter.

Examples

Allow Standard and Extended ID Messages

Allow all standard and extended ID messages to pass the filter.

canch = canChannel('Vector','CANCaseXL 1',1);
filterAllowAll(canch,'Standard')
filterAllowAll(canch,'Extended')

canch.FilterHistory

'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to filter.
Example: canch = canChannel('NI','CAN1')

type — Identifier type
'standard' | 'extended'

Identifier type by which to filter, specified as a character vector or string. CAN messages identifier
types are 'Standard' and 'Extended'.
Example: 'Standard'
Data Types: char | string

See Also
Functions
canChannel | canMessage | filterAllowOnly | filterBlockAll

13 Functions

13-96

Introduced in R2011b

 filterAllowAll

13-97

filterAllowAll (J1939)
Open parameter group filters on J1939 channel

Syntax
filterAllowAll(chan)

Description
filterAllowAll(chan) opens all parameter group filters on the specified channel, making all
parameter groups receivable.

Examples

Allow All Parameter Groups to Be Received

Open the filter to allow all J1939 parameter groups on the channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
filterAllowAll(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

See Also
Functions
filterAllowOnly | filterBlockOnly | j1939Channel

Introduced in R2015b

13 Functions

13-98

filterAllowOnly
Configure CAN message filter to allow only specified messages

Syntax
filterAllowOnly(canch,name)
filterAllowOnly(canch,IDs,type)

Description
filterAllowOnly(canch,name) configures the filter on the channel canch to pass only messages
with the specified name.

Set the channel object Database property to attach a database to allow filtering by message names.

filterAllowOnly(canch,IDs,type) configures the filter on the channel canch to pass only
messages of the specified identifier type and values.

Examples

Filter by Message Name

Filter a database defined message with the name 'EngineMsg'

canch = canChannel('Vector','CANCaseXL 1',1);
canch.Database = canDatabase('candatabase.dbc');
filterAllowOnly(canch,'EngineMsg')

Filter by Message IDs

Filter messages by identifiers.

canch = canChannel('Vector','CANCaseXL 1',1);
filterAllowOnly(canch,[602 612],'Standard')

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to filter.
Example: canch = canChannel('NI','CAN1')

name — Name of CAN messages
char vector | string

 filterAllowOnly

13-99

Name of CAN messages that you want to allow, specified as a character vector, string, or supporting
array of these types.
Example: 'EngineMsg'
Data Types: char | string | cell

IDs — CAN message IDs
numeric value

CAN message IDs that you want to allow, specified as a numeric value or vector.

Specify IDs as a decimal value. To convert a hexadecimal to a decimal value, use the hex2dec
function.
Example: 600, [600,610], [600:800], [200:400,600:800]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

type — Identifier type
'standard' | 'extended'

Identifier type by which to filter, specified as a character vector or string. CAN messages identifier
types are 'Standard' and 'Extended'.
Example: 'Standard'
Data Types: char | string

See Also
Functions
canChannel | canDatabase | filterAllowAll | filterBlockAll | hex2dec

Introduced in R2011b

13 Functions

13-100

filterAllowOnly (J1939)
Allow only specified parameter groups to pass J1939 channel filter

Syntax
filterAllowOnly(chan,pgname)

Description
filterAllowOnly(chan,pgname) configures the filter on the channel chan to pass only the
parameter groups specified by pgname.

Examples

Allow Only Some Parameter Groups to Be Received

Configure the channel filter to allow only specified J1939 parameter groups to be received on the
channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
filterAllowOnly(chan,{'PG1' 'PG2'})

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

pgname — Allowed J1939 parameter groups
char vector | string | array

Allowed J1939 parameter groups, specified as a character vector, string, or array of these.
Example: 'PG1'
Data Types: char | string | cell

See Also
Functions
filterAllowAll | filterBlockOnly | j1939Channel

Introduced in R2015b

 filterAllowOnly (J1939)

13-101

filterBlockAll
Configure filter to block CAN messages with specified identifier type

Syntax
filterBlockAll(canch,type)

Description
filterBlockAll(canch,type) configures the CAN message filter to block all messages matching
the specified identifier type.

Examples

Block All Standard ID Messages

Block all standard ID message types.

canch = canChannel('Vector','CANCaseXL 1',1)
filterBlockAll(canch,'Standard')

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to filter.
Example: canch = canChannel('NI','CAN1')

type — Identifier type
'standard' | 'extended'

Identifier type by which to filter, specified as a character vector or string. CAN messages identifier
types are 'Standard' and 'Extended'.
Example: 'Standard'
Data Types: char | string

See Also
Functions
canChannel | filterAllowAll | filterAllowOnly

Introduced in R2011b

13 Functions

13-102

filterBlockOnly (J1939)
Block only specified parameter groups on J1939 channel filter

Syntax
filterBlockOnly(chan,pgname)

Description
filterBlockOnly(chan,pgname) configures the filter on the channel chan to block only the
parameter groups specified by pgname.

Examples

Block Only Some Parameter Groups on Channel

Configure the channel filter to block only specified J1939 parameter groups on the channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
filterBlockOnly(chan,{'PG1' 'PG2'})

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

pgname — Blocked J1939 parameter groups
char vector | string | array

Blocked J1939 parameter groups, specified as a character vector, string, or array of these.
Example: 'PG1'
Data Types: char | string | cell

See Also
Functions
filterAllowAll | filterAllowOnly | j1939Channel

Introduced in R2015b

 filterBlockOnly (J1939)

13-103

freeMeasurementLists
Remove all measurement lists from XCP channel

Syntax
freeMeasurementLists(xcpch)

Description
freeMeasurementLists(xcpch) removes all configured measurement lists from the specified XCP
channel.

Examples

Free DAQ Lists

Create two data acquisition lists and remove them.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1);

Connect the channel to the slave module.

connect(xcpch)

Setup a data acquisition measurement list with the '10 ms' event and 'PMW' measurement.
createMeasurementList(xcpch, 'DAQ', '10 ms', {'BitSlice0','PWMFiltered','Triangle'})

Create another measurement list with the '100ms' event and 'PWMFiltered', and 'Triangle'
measurements.

createMeasurementList(xcpch, 'DAQ', '100ms', {'PWMFiltered','Triangle'})

view details of the measurement lists.

viewMeasurementLists(xcpch)

DAQ List #1 using the "10 ms" event @ 0.010000 seconds and the following measurements:
 PWM

DAQ List #2 using the "100ms" event @ 0.100000 seconds and the following measurements:
 PWMFiltered
 Triangle

Free the measurement lists.

13 Functions

13-104

freeMeasurementLists(xcpch)

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

See Also
createMeasurementList | viewMeasurementLists | xcpA2L | xcpChannel

Introduced in R2013a

 freeMeasurementLists

13-105

getCharacteristicInfo
Get information about specific characteristic from A2L file

Syntax
info = getCharacteristicInfo(a2lFile,characteristic)

Description
info = getCharacteristicInfo(a2lFile,characteristic) returns information about the
specified characteristic from the specified A2L file, and stores it in the xcp.Characteristic object,
info.

Examples

Get XCP Characteristic Information

Create a handle to parse an A2L file and get information about the curve1_8_uc characteristic.

a2lfile = xcpA2L('C:\XCPSIM.a2l');
info = getCharacteristicInfo(a2lfile,'curve1_8_uc')

info =

 Characteristic with properties:

 CharacteristicType: 'VAL_BLK'
 Deposit: [1×1 xcp.RecordLayout]
 AxisConversion: {}
 Name: 'curve1_8_uc'
 LongIdentifier: '8 BYTE shared axis Curve2'
 ECUAddress: 1131912
 ECUAddressExtension: 0
 Conversion: [1×1 xcp.CompuMethodRational]
 Dimension: [8 1 1]
 LowerLimit: 0
 UpperLimit: 255
 BitMask: []

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

characteristic — XCP channel characteristic name
char vector | string

XCP channel characteristic name, specified as a character vector or string.
Example: 'curve1_8_uc'
Data Types: char | string

13 Functions

13-106

Output Arguments
info — XCP characteristic information
xcp.Characteristic object

XCP characteristic information, returned as an xcp.Characteristic object, containing characteristic
details such as type, identifier, and conversion.

See Also
getEventInfo | getMeasurementInfo | xcpA2L

Topics
“Inspect the Contents of an A2L File” on page 7-2
“XCP Database and Communication Workflow” on page 6-2

Introduced in R2018a

 getCharacteristicInfo

13-107

getEventInfo
Get event information about specific event from A2L file

Syntax
info = getEventInfo(a2lFile,eventName)

Description
info = getEventInfo(a2lFile,eventName) returns information about the specified event from
the specified A2L file, and stores it in the xcp.Event object, info.

Examples

Get XCP Event Information

Create a handle to parse an A2L file and get information about the '10 ms' event.

a2lfile = xcpA2L('C:\XCPSIM.a2l')
info = getEventInfo(a2lfile,'10 ms')

info =
 Event with properties:
 Name: '10 ms'
 Direction: 'DAQ_STIM'
 MaxDAQList: 255
 ChannelNumber: 1
 ChannelTimeCycle: 10
 ChannelTimeUnit: 6
 ChannelPriority: 0
 ChannelTimeCycleInSeconds: 0.0100

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

eventName — XCP event name
character vector | string

XCP event name, specified as a character vector or string. Make sure eventName matches the
corresponding event name defined in your A2L file.

13 Functions

13-108

Output Arguments
info — XCP event information
xcp.Event object

XCP event information, returned as xcp.Event object, containing event details such as timing and
priority.

See Also
Functions
getCharacteristicInfo | getMeasurementInfo | xcpA2L

Topics
“Inspect the Contents of an A2L File” on page 7-2
“XCP Database and Communication Workflow” on page 6-2

Introduced in R2013a

 getEventInfo

13-109

getMeasurementInfo
Get information about specific measurement from A2L file

Syntax
info = getMeasurementInfo(a2lFile,measurementName)

Description
info = getMeasurementInfo(a2lFile,measurementName) returns information about the
specified measurement from the specified A2L file, and stores it in the xcp.Measurement object,
info.

Examples

Get XCP Measurement Information

Create a handle to parse an A2L file and get information about the channel1 measurement.

a2lfile = xcpA2L('C:\XCPSIM.a2l')
info = getMeasurementInfo(a2lfile,'channel1')

info = Measurement with properties:

 Resolution: 0
 Accuracy: 0
 LocDataType: 'FLOAT32_IEEE'
 Name: 'channel1'
 LongIdentifier: 'FLOAT demo signal (sine wave)'
 ECUAddress: 1155080
 ECUAddressExtension: 0
 Conversion: [1×1 xcp.CompuMethodRational]
 Dimension: 1
 LowerLimit: -1.0000e+12
 UpperLimit: 1.0000e+12
 BitMask: []

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

13 Functions

13-110

Output Arguments
info — XCP measurement information
xcp.Measurement object

XCP measurement information, returned as an xcp.Measurement object, containing measurement
details such as memory address, identifier, and limits.

See Also
getCharacteristicInfo | getEventInfo | xcpA2L

Topics
“Inspect the Contents of an A2L File” on page 7-2
“XCP Database and Communication Workflow” on page 6-2

Introduced in R2013a

 getMeasurementInfo

13-111

getValue
Retrieve instance value from CDFX object

Syntax
iVal = getValue(cdfxObj,instName)
iVal = getValue(cdfxObj,instName,sysName)

Description
iVal = getValue(cdfxObj,instName) returns the value of the unique instance whose
ShortName is specified by instName. If multiple instances share the same ShortName, the function
returns an error.

iVal = getValue(cdfxObj,instName,sysName) returns the value of the instance whose
ShortName is specified by instName and is contained in the system specified by sysName.

Examples

Retrieve Value of Instance

Create an asam.cdfx object and read the value of its VALUE_NUMERIC instance.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
iVal = getValue(cdfxObj,'VALUE_NUMERIC')

iVal =

 12.2400

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

instName — Instance name
char | string

Instance name, specified as a character vector or string.
Example: 'NUMERIC_VALUE'
Data Types: char | string

sysName — Parent system name
char | string

13 Functions

13-112

Parent system name, specified as a character vector or string.
Example: 'System2'
Data Types: char | string

Output Arguments
iVal — Instance value
instance type

Instance value, returned as the instance type.

See Also
Functions
cdfx | instanceList | setValue | systemList | write

Introduced in R2019a

 getValue

13-113

hasdata (MDFDatastore)
Determine if data is available to read from MDF datastore

Syntax
tf = hasdata(mdfds)

Description
tf = hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF
datastore specified by mdfds. Otherwise, it returns logical 0 (false).

Examples

Check MDF Datastore for Readable Data

Use hasdata in a loop to control read iterations.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
 m = read(mdfds);
end

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments
tf — Indicator of data to read
1 | 0

Indicator of data to read, returned as a logical 1 (true) or 0 (false).

See Also
Functions
mdfDatastore | read | readall | reset

Introduced in R2017b

13 Functions

13-114

instanceList
Parameter instances in the CDFX object

Syntax
iList = instanceList(cdfxObj)
iList = instanceList(cdfxObj,instName)
iList = instanceList(cdfxObj,instName,sysName)

Description
iList = instanceList(cdfxObj) returns a table of every parameter instance in the CDFX
object.

iList = instanceList(cdfxObj,instName) returns a table of every parameter instance in the
CDFX object whose ShortName matches instName.

iList = instanceList(cdfxObj,instName,sysName) returns a table of every parameter
instance in the CDFX object whose ShortName matches instName and whose parent System
matches sysName.

Examples

View CDFX Object Instances

Create an asam.cdfx object and view its parameter instances.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
iList = instanceList(cdfxObj);
iList(1:4,1:4)

ans =

 4×4 table

 ShortName System Category Value
 _______________ _________ _________ _____________________________________

 "VALUE_NUMERIC" "System1" "VALUE" [12.2400]
 "VALUE_TEXT" "System1" "VALUE" ["Text_Value"]
 "BLOB_HEX" "System1" "BLOB" ["0102030405060708 090A0B0C0D0E0F10"]
 "BOOLEAN_TEXT" "System1" "BOOLEAN" [1]

iList = instanceList(cdfxObj,"VALUE_NUMERIC")

iList =

 1×6 table

 ShortName System Category Value Units FeatureReference
 _______________ _________ ________ _________ _____ ________________

 "VALUE_NUMERIC" "System1" "VALUE" [12.2400] "" "model1"

iList = instanceList(cdfxObj,"VALUE_NUMERIC","System1")

iList =

 instanceList

13-115

 1×6 table

 ShortName System Category Value Units FeatureReference
 _______________ _________ ________ _________ _____ ________________

 "VALUE_NUMERIC" "System1" "VALUE" [12.2400] "" "model1"

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

instName — Instance name
string

Instance name, specified as a string.
Example: "NUMERIC_VALUE"
Data Types: string

sysName — Parent system name
string

Parent system name, specified as a string.
Example: "System2"
Data Types: string

Output Arguments
iList — Instance list
table

Instance list, returned as a table.

See Also
Functions
cdfx | getValue | setValue | systemList | write

Introduced in R2019a

13 Functions

13-116

isConnected
Return connection status

Syntax
isConnected(xcpch)

Description
isConnected(xcpch) returns a boolean value to indicate active connection to the slave.

Examples

Verify if XCP Channel is Connected

Create a new XCP channel and see if it is connected.

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1)
isConnected(xcpch)

ans =

 0

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

See Also
xcpChannel

Introduced in R2013a

 isConnected

13-117

isMeasurementRunning
Indicate if measurement is active

Syntax
isMeasurementRunning(xcpch)

Description
isMeasurementRunning(xcpch) returns a boolean indicating if the configured measurements are
active and running.

Examples

Verify if Configured Measurement List is Active

Set up a DAQ measurement list and start it. Verify if this list is running.

Create an XCP channel with a CAN slave module.

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1);

Setup a data acquisition measurement list with the ‘10 ms’ event and 'Bitslice' measurement and
verify if measurement is running.

createMeasurementList(xcpch, 'DAQ', '10 ms', 'BitSlice')
isMeasurementRunning(xcpch)

ans =

 0

Start your measurement and verify if measurement is running.

startMeasurement(xcpch)
isMeasurementRunning(xcpch)

ans =

 1

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

13 Functions

13-118

See Also
startMeasurement

Introduced in R2013a

 isMeasurementRunning

13-119

j1939Channel
Create J1939 CAN channel

Syntax
j1939Ch = j1939Channel(database,'vendor','device')
j1939Ch = j1939Channel(database,'vendor','device',chanIndex)

Description
j1939Ch = j1939Channel(database,'vendor','device') creates a J1939 channel connected
to the specified CAN device. Use this syntax for National Instruments and PEAK-System devices,
which do not require a channel index argument.

j1939Ch = j1939Channel(database,'vendor','device',chanIndex) creates a J1939 CAN
channel connected to the specified CAN device and channel index. Use this syntax for Vector and
Kvaser devices that support a channel index specifier.

Examples

Create a J1939 CAN Channel for a Vector Device

Specify a database.

db = canDatabase('C:\J1939DB.dbc');

Create the channel object.

j1939Ch = j1939Channel(db,'Vector','Virtual 1',1)

j1939Ch =

 Channel with properties:

 Device Information:

 DeviceVendor: 'Vector'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0

 Data Details:

 ParameterGroupsAvailable: 0
 ParameterGroupsReceived: 0
 ParameterGroupsTransmitted: 0
 FilterPassList: []
 FilterBlockList: []

 Channel Information:

13 Functions

13-120

 Running: 0
 BusStatus: 'N/A'
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 SilentMode: 0
 TransceiverName: ''
 TransceiverState: 0
 BusSpeed: 500000
 SJW: 1
 TSEG1: 4
 TSEG2: 3
 NumOfSamples: 1

 Other Information:

 UserData: []

Create a J1939 CAN Channel for a National Instruments Device

Specify a database.

db = canDatabase('C:\J1939DB.dbc');

Create the channel object.

j1939Ch = j1939Channel(db,'NI','CAN1');

Input Arguments
database — CAN database
CAN database object

CAN database specified as a CAN database object. The specified database contains J1939 parameter
group definitions.
Example: database = canDatabase('C:\database.dbc')

vendor — Name of device vendor
'Vector' | 'NI' | 'Kvaser' | 'Peak-System'

Name of device vendor, specified as a character vector or string.
Example: 'Vector'
Data Types: char | string

device — Name of CAN device
char vector | string

Name of CAN device attached to the J1939 CAN channel, specified as a character vector or string.

For Kvaser and Vector products, device is a combination of the device type and a device index. For
example, a Kvaser device might be 'USBcanProfessional 1'; if you have two Vector CANcardXL
devices, device can be 'CANcardXL 1' or 'CANcardXL 2'.

 j1939Channel

13-121

For National Instruments devices the devicenumber is the interface number defined in the NI
Measurement & Automation Explorer.

For PEAK-System devices the devicenumber is the alphanumeric device number defined for the
channel.
Example: 'Virtual 1'
Data Types: char | string

chanIndex — Channel number of CAN device
numeric

Channel number of the CAN device attached to the J1939 CAN channel, specified as a numeric value.
Use this argument with Kvaser and Vector devices.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
j1939Ch — J1939 CAN channel
J1939 CAN channel object

J1939 CAN channel returned as a channel object.

See Also
Functions
canDatabase | j1939ParameterGroup | receive | transmit

Properties
SilentMode | TransceiverState | UserData

Topics
“J1939 Channel Workflow” on page 9-6

Introduced in R2015b

13 Functions

13-122

j1939ParameterGroup
Create J1939 parameter group

Syntax
pg = j1939ParameterGroup(database,name)

Description
pg = j1939ParameterGroup(database,name) creates a parameter group using the name
defined in the specified database.

Examples

Create a Parameter Group

This example shows how to attach a database to a parameter group name and view the signal
information in the group.

Create a database handle.

db = canDatabase('C:\j1939Demo.dbc');

Create a parameter group.

pg = j1939ParameterGroup(db,'PackedData')

pg =

 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'PackedData'
 PGN: 57344
 Priority: 6
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 50
 DestinationAddress: 255

 Data Details:

 Timestamp: 0
 Data: [255 255 255 255 255 255 255 255]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

Examine the signals in the parameter group.

 j1939ParameterGroup

13-123

pg.Signals

ans =

 ToggleSwitch: -1
 SliderSwitch: -1
 RockerSwitch: -1
 RepeatingStairs: 255
 PushButton: 1

Input Arguments
database — Handle to CAN database
CAN database object

Handle to CAN database, specified as a CAN database object. The specified database contains J1939
parameter group definitions.
Example: db = canDatabase('C:\database.dbc')

name — Parameter group name
character vector | string

Parameter group name, specified as a character vector or string. The name must match the name
specified in the attached CAN database.
Example: 'pgName'
Data Types: char | string

See Also
Functions
canDatabase | j1939Channel

Properties
DestinationAddress | PDUFormatType | Priority | Signals | SourceAddress | UserData

Topics
“J1939 Interface” on page 9-2
“J1939 Parameter Group Format” on page 9-3

Introduced in R2015b

13 Functions

13-124

j1939ParameterGroupImport
Import J1939 log file

Syntax
pgs = j1939ParameterGroupImport(file,vendor,database)

Description
pgs = j1939ParameterGroupImport(file,vendor,database) reads the input file as a CAN
message log file from the specified vendor. Using the specified CAN database, the CAN messages are
converted into J1939 parameter groups, and assigns the output to the array pgs.

Examples

Import Log Data to J1939 Parameter Groups

Read a CAN message log file, and generate J1939 parameter groups according to a CAN database.

db = canDatabase('MyDatabase.dbc');
pgs = j1939ParameterGroupImport('MsgLog.asc','Vector',db);

Input Arguments
file — CAN message log file
character vector | string

CAN message log file, specified as a character vector or string.
Example: 'MyDatabase.dbc'
Data Types: char | string

vendor — Vendor file format
'Kvaser' | 'Vector'

Vendor file format, specified as a character vector or string. The supported file formats are those
defined by Vector and Kvaser.
Example: 'Vector'
Data Types: char | string

database — CAN database
database handle

CAN database, specified as a database handle.

 j1939ParameterGroupImport

13-125

Output Arguments
pgs — J1939 parameter groups
parameter group array

J1939 parameter groups, returned as a parameter group array.

See Also
Functions
canDatabase

Introduced in R2017a

13 Functions

13-126

mdf
Access information contained in MDF-file

Syntax
mdfObj = mdf(mdfFileName)

Description
mdfObj = mdf(mdfFileName) identifies a measurement data format (MDF) file and returns an
MDF-file object, which you can use to access information and data contained in the file. You can
specify a full or partial path to the file.

Examples

Create MDF-File Object for Specified MDF-File

Create an MDF object for a given file, and view the object display.

mdfObj = mdf('MDFFile.mf4')

MDF with properties:

 File Details
 Name: 'MDFFile.mf4'
 Path: 'c:\temp\MDFFile.mf4'
 Author: 'HOK'
 Department: 'Research'
 Project: 'MDF'
 Subject: 'CAN bus'
 Comment: 'This file contains CAN messages'
 Version: '4.10'
 DataSize: 32100
 InitialTimestamp: 2016-02-27 12:09:02

 Creator Details
 ProgramIdentifier: 'mmddff.04'
 Creator: [1×1 struct]

 File Contents
 Attachment: [1×1 struct]
 ChannelNames: {6×1 cell}
 ChannelGroup: [1×6 struct]

Input Arguments
mdfFileName — MDF-file name
char vector | string

MDF-file name, specified as a character vector or string, including the necessary full or relative path.

 mdf

13-127

Example: 'MDFFile.mf4'
Data Types: char | string

Output Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, returned as an MDF-file object. The object provides access to the MDF-file information
contained in the following properties.

Property Description
Name Name of the MDF-file, including extension
Path Full path to the MDF-file, including file name
Author Author who originated the MDF-file
Department Department that originated the MDF-file
Project Project that originated the MDF-file
Subject Subject matter in the MDF-file
Comment Open comment field from the MDF-file
Version MDF standard version of the file
DataSize Total size of the data in the MDF-file, in bytes
InitialTimestamp Time when file data acquisition began in UTC or local time
ProgramIdentifier Originating program of the MDF-file
Creator Structure containing details about creator of the MDF-file, with these

fields: VendorName, ToolName, ToolVersion, UserName, and
Comment

Attachment Structure of information about attachments contained within the MDF-
file, with these fields: Name, Path, Comment, Type, MIMEType, Size,
EmbeddedSize, and MD5CheckSum

ChannelNames Cell array of the channel names in each channel group
ChannelGroup Structure of information about channel groups contained within the

MDF-file, with these fields: AcquisitionName, Comment, NumSamples,
DataSize, Sorted, and Channel

See Also
Functions
mdfInfo | mdfSort | mdfVisualize | read | saveAttachment

Topics
“Access MDF Files”
“Reading Data from MDF Files”

Introduced in R2016b

13 Functions

13-128

mdfDatastore
Datastore for collection of MDF-files

Description
Use the MDF datastore object to access data from a collection of MDF-files.

Creation

Syntax
mdfds = mdfDatastore(location)
mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...)

Description

mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF-file or a
collection of files in the folder specified by location. All files in the folder with
extensions .mdf, .dat, or .mf4 are included.

mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...) specifies function
options and properties of mdfds using optional name-value pairs.

Note This function is supported only on 64-bit Windows operating systems.

Input Arguments

location — Location of MDF datastore files
character vector | cell array | DsFileSet object

Location of MDF datastore files, specified as a character vector, cell array of character vectors, or
matlab.io.datastore.DsFileSet object identifying either files or folders. The path can be
relative or absolute, and can contain the wildcard character *. If location specifies a folder, by
default the datastore includes all files in that folder with the extensions .mdf, .dat, or .mf4.
Example: 'CANape.MF4'
Data Types: char | cell | DsFileSet

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments to set file information or object
“Properties” on page 13-130. Allowed options are IncludeSubfolders, FileExtensions, and the
properties ReadSize, SelectedChannelGroupNumber, and SelectedChannelNames.
Example: 'SelectedChannelNames','Counter_B4'

 mdfDatastore

13-129

IncludeSubfolders — Include files in subfolders
false (default) | true

Include files in subfolders, specified as a logical. Specify true to include files in each folder and
recursively in subfolders.
Example: 'IncludeSubfolders',true
Data Types: logical

FileExtensions — Custom extensions for filenames to include in MDF datastore
{'.mdf','.dat','.mf4'} (default) | char | cell

Custom extensions for filenames to include in the MDF datastore, specified as a character vector or
cell array of character vectors. By default, the supported extensions include .mdf, .dat, and .mf4. If
your files have custom or nonstandard extensions, use this Name-Value setting to include files with
those extensions.
Example: 'FileExtensions',{'.myformat1','.myformat2'}
Data Types: char | cell

Properties
ChannelGroups — All channel groups present in first MDF-file (read-only)
table

All channel groups present in first MDF-file, returned as a table.
Data Types: table

Channels — All channels present in first MDF-file (read-only)
table

All channels present in first MDF-file, returned as a table.

Those channels targeted for reading must have the same name and belong to the same channel group
in each file of the MDF datastore
Data Types: table

Files — Files included in datastore
char | string | cell

Files included in the datastore, specified as a character vector, string, or cell array.
Example: {'file1.mf4','file2.mf4'}
Data Types: char | string | cell

ReadSize — Size of data returned by read
'file' (default) | numeric | duration

Size of data returned by the read function, specified as 'file', a numeric value, or a duration. A
character vector value of 'file' causes the entire file to be read; a numeric double value specifies
the number of records to read; and a duration value specifies a time range to read.

If you later change the ReadSize property value type, the datastore resets.

13 Functions

13-130

Example: 50
Data Types: double | char | duration

SelectedChannelGroupNumber — Channel group to read
numeric scalar

Channel group to read, specified as a numeric scalar value.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SelectedChannelNames — Names of channels to read
char | string | cell

Names of channels to read, specified as a character vector, string, or cell array.

Those channels targeted for reading must have the same name and belong to the same channel group
in each file of the MDF datastore.
Example: 'Counter_B4'
Data Types: char | string | cell

Object Functions
read Read data in MDF datastore
readall Read all data in MDF datastore
preview Subset of data from MDF datastore
reset Reset MDF datastore to initial state
hasdata Determine if data is available to read from MDF datastore
partition Partition MDF datastore
numpartitions Number of partitions for MDF datastore
combine (MATLAB) Combine data from multiple datastores
transform (MATLAB) Transform datastore
isPartitionable (MATLAB) Determine whether datastore is partitionable
isShuffleable (MATLAB) Determine whether datastore is shuffleable

Examples

Create an MDF Datastore

Create an MDF datastore from the sample file CANape.MF4, and read it into a timetable.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
 m = read(mdfds);
end

See Also
Topics
“Using MDF Files Via MDF Datastore”

 mdfDatastore

13-131

Introduced in R2017b

13 Functions

13-132

mdfInfo
Information about MDF-file

Syntax
fileInfo = mdfInfo(mdfFileName)

Description
fileInfo = mdfInfo(mdfFileName) returns a struct that contains information about the
specified MDF-file, including name, location, version, size, and initial timestamp of the data.

Examples

Access Information About MDF-File

Get the MDF-file information, and programmatically read its version.

fileInfo = mdfInfo('MDFFile.mdf');
fileInfo.Version

ans =

 '3.20'

Input Arguments
mdfFileName — MDF-file name
char vector | string

MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char | string

Output Arguments
fileInfo — MDF-file information
structure

MDF-file information, returned as a structure.

See Also
Functions
mdf

 mdfInfo

13-133

Introduced in R2019b

13 Functions

13-134

mdfSort
Create sorted copy of MDF-file

Syntax
sortedPath = mdfSort(UnsortedMDFFile,SortedMDFFile)

Description
sortedPath = mdfSort(UnsortedMDFFile,SortedMDFFile) creates a copy of an MDF-file with
its data sorted according to ASAM standards for fast reading. If you get an error when trying to read
an unsorted file, create a sorted file and read from that instead. The optional output argument,
sortedPath, indicates the full path to the sorted file, including the file name.

Note This function is supported only on 64-bit Windows operating systems.

Examples

Sort and Read MDF-File

Create a sorted MDF-file and read its data.

sortedPath = mdfSort('UnsortedMDFFile.mf4','SortedMDFFile.mf4');
M = mdf('SortedMDFFile.mf4');
MD = read(M);

Input Arguments
UnsortedMDFFile — Original MDF-file without sorted data
string | char

Original MDF-file without sorted data, specified as a string or character vector. Full and relative path
names are allowed.
Example: 'UnsortedMDFFile.mf4'
Data Types: char | string

SortedMDFFile — New copy of MDF-file with sorted data
string | char

New copy of MDF-file with sorted data, specified as a string or character vector. Full and relative
path names are allowed.
Example: 'SortedMDFFile.mf4'
Data Types: char | string

 mdfSort

13-135

Output Arguments
sortedPath — Path to new file
char

Full path to new file, returned as a character vector. The path includes the file name.

See Also
Functions
mdf | read

Introduced in R2019b

13 Functions

13-136

mdfVisualize
View channel data from MDF-file

Syntax
mdfVisualize(mdfFileName)

Description
mdfVisualize(mdfFileName) opens an MDF-file in the Simulation Data Inspector for viewing and
interacting with channel data. mdfFileName is the name of the MDF-file, specified as a full or partial
path.

Note This function is supported only on 64-bit Windows operating systems.

Examples

View MDF Data

View the data from a specified MDF-file in the Simulation Data Inspector.

mdfVisualize('File01.mf4')

Input Arguments
mdfFileName — MDF-file name
char vector | string

MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char | string

See Also
Functions
mdf | read

Topics
“View and Analyze Simulation Results” (Simulink)

Introduced in R2019a

 mdfVisualize

13-137

messageInfo
Information about CAN database messages

Syntax
msgInfo = messageInfo(candb)
msgInfo = messageInfo(candb,msgName)
msgInfo = messageInfo(candb,id,msgIsExtended)

Description
msgInfo = messageInfo(candb) returns a structure with information about the CAN messages in
the specified database candb.

msgInfo = messageInfo(candb,msgName) returns information about the specified message
'msgName'.

msgInfo = messageInfo(candb,id,msgIsExtended) returns information about the message
with the specified standard or extended ID.

Examples

Get All Messages

Get information from all messages in a CAN database.

candb = canDatabase('J1939DB.dbc');
msgInfo = messageInfo(candb)

msgInfo =
3x1 struct array with fields:
 Name
 Comment
 ID
 Extended
 J1939
 Length
 Signals
 SignalInfo
 TxNodes
 Attributes
 AttributeInfo

You can index into the structure for information on a particular message.

Get One Message by Name

Get information from one message in a CAN database using the message name.

13 Functions

13-138

candb = canDatabase('J1939DB.dbc');
msgInfo = messageInfo(candb,'A1')

msgInfo =
 Name: 'A1'
 Comment: 'This is an A1 message'
 ID: 419364350
 Extended: 1
 J1939: [1x1 struct]
 Length: 8
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]
 TxNodes: {'AerodynamicControl'}
 Attributes: {4x1 cell}
 AttributeInfo: [4x1 struct]

Get One Message by ID

Get information from one message in a CAN database using the message ID.

candb = canDatabase('J1939DB.dbc');
msgInfo = messageInfo(candb,419364350,true)

msgInfo =
 Name: 'A1'
 Comment: 'This is an A1 message'
 ID: 419364350
 Extended: 1
 J1939: [1x1 struct]
 Length: 8
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]
 TxNodes: {'AerodynamicControl'}
 Attributes: {4x1 cell}
 AttributeInfo: [4x1 struct]

Input Arguments
candb — CAN database
CAN database object

CAN database, specified as a CAN database object. candb identifies the database containing the CAN
messages that you want information about.
Example: candb = canDatabase(_____)

msgName — Message name
character vector | string

Message name, specified as a character vector or string. Provide the name of the message you want
information about.
Example: 'A1'
Data Types: char | string

 messageInfo

13-139

id — Message ID
numeric value

Message ID, specified as a numeric value. id is the numeric identifier of the specified message, in
either extended or standard form.
Example: 419364350
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

msgIsExtended — Message ID format
true | false

Message ID format, specified as a logical. Specify whether the message ID is in standard or extended
type. Use the logical value true if extended, or false if standard. There is no default; you must
provide this argument when using a message ID.
Example: true
Data Types: logical

Output Arguments
msgInfo — Message information
structure

Message information, returned as a structure or array of structures for the specified CAN database
and messages.

See Also
Functions
attributeInfo | canDatabase | canMessage | nodeInfo | signalInfo

Properties
MessageInfo | Messages

Introduced in R2009a

13 Functions

13-140

nodeInfo
Information about CAN database node

Syntax
info = nodeInfo(db)
info = nodeInfo(db,NodeName)

Description
info = nodeInfo(db) returns a structure containing information for all nodes found in the
database db.

If no matches are found in the database, nodeInfo returns an empty node information structure.

info = nodeInfo(db,NodeName) returns a structure containing information for the specified
node in the database db.

Examples

View Information from All Nodes

Create a CAN database object, and view information about its nodes.

db = canDatabase('c:\Database.dbc')
info = nodeInfo(db)

info =
3x1 struct array with fields:
 Name
 Comment
 Attributes
 AttributeInfo

View name of first node.

n = info(1).Name

n =
AerodynamicControl

View Information from One Node

Create a CAN database object, and view information about its first node, listed in the previous
example.

db = canDatabase('c:\Database.dbc')
info = nodeInfo(db,'AerodynamicControl')

 nodeInfo

13-141

info =
 Name: 'AerodynamicControl'
 Comment: 'This is an AerodynamicControl node'
 Attributes: {3x1 cell}
 AttributeInfo: [3x1 struct]

Input Arguments
db — CAN database
CAN database object

CAN database, specified as a CAN database object.
Example: db = canDatabase(_____)

NodeName — Node name
char vector | string

Node name, specified as a character vector or string.
Example: 'AerodynamicControl'
Data Types: char | string

Output Arguments
info — Node information
structure

Node information, returned as a structure with these fields:

Field Description
Name Node name
Comment Text about node

See Also
Functions
attributeInfo | canDatabase | messageInfo | signalInfo

Properties
NodeInfo | Nodes

Introduced in R2015b

13 Functions

13-142

numpartitions (MDFDatastore)
Number of partitions for MDF datastore

Syntax
N = numpartitions(mdfds)
N = numpartitions(mdfds,pool)

Description
N = numpartitions(mdfds) returns the recommended number of partitions for the MDF
datastore mdfds. Use the result as an input to the partition function.

N = numpartitions(mdfds,pool) returns a reasonable number of partitions to parallelize mdfds
over the parallel pool, pool, based on the number of files in the datastore and the number of workers
in the pool.

Examples

Find Recommended Number of Partitions for MDF Datastore

Determine the number of partitions you should use for your MDF datastore.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

pool — Parallel pool
parallel pool object

Parallel pool specified as a parallel pool object.
Example: gcp

Output Arguments
N — Number of partitions
double

Number of partitions, returned as a double. This number is the calculated recommendation for the
number of partitions for your MDF datastore. Use this when partitioning your datastore with the
partition function.

 numpartitions (MDFDatastore)

13-143

See Also
Functions
mdfDatastore | partition | read | reset

Introduced in R2017b

13 Functions

13-144

pack
Pack signal data into CAN message

Syntax
pack(message,value,startbit,signalsize,byteorder)

Description
pack(message,value,startbit,signalsize,byteorder) takes specified input parameters and
packs them into the message.

Examples

Pack a CAN Message

Pack a CAN message with a 16-bit integer value of 1000.

message = canMessage(500,false,8);
pack(message,int16(1000),0,16,'LittleEndian')
message.Data

 1×8 uint8 row vector

 232 3 0 0 0 0 0 0

Note that 1000 = (3 x 256) + 232.

Pack a CAN message with a double value of 3.14. A double requires 64 bits.

pack(message,3.14,0,64,'LittleEndian')

Pack a CAN message with a single value of -40. A single requires 32 bits.

pack(message,single(-40),0,32,'LittleEndian')

Input Arguments
message — CAN message
CAN message object

CAN message, specified as a CAN message object.
Example: canMessage

value — Value of signal to pack into message
numeric value

Value of signal to pack into message, specified as a numeric value. The value is assumed decimal, and
distributed among the 8 bytes of the message Data property. You should convert the value into the
data type expected for transmission.

 pack

13-145

Example: int16(1000)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

startbit — Signal starting bit in data
single | double

Signal starting bit in the data, specified as a single or double value. This is the least significant bit
position in the signal data. Accepted values for startbit are from 0 through 63, inclusive.
Example: 0
Data Types: single | double

signalsize — Length of signal in bits
numeric value

Length of the signal in bits, specified as a numeric value. Accepted values for signalsize are from
1 through 64, inclusive.
Example: 16
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

byteorder — Signal byte order format
'LittleEndian' | 'BigEndian'

Signal byte order format, specified as 'LittleEndian' or 'BigEndian'.
Example: 'LittleEndian'
Data Types: char | string

See Also
Functions
canMessage | extractAll | extractRecent | extractTime | unpack

Introduced in R2009a

13 Functions

13-146

partition (MDFDatastore)
Partition MDF datastore

Syntax
subds = partition(mdfds,N,index)

subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)

Description
subds = partition(mdfds,N,index) partitions the MDF datastore mdfds into the number of
parts specified by N, and returns the partition corresponding to the index index.

subds = partition(mdfds,'Files',index) partitions the MDF datastore by files and returns
the partition corresponding to the file of index index in the Files property.

subds = partition(mdfds,'Files',filename) partitions the datastore by files and returns the
partition corresponding to the specified filename.

Examples

Partition an MDF Datastore into Default Parts

Partition an MDF datastore from the sample file CANape.MF4, and return the first part.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);

Partition an MDF Datastore by Its Files

Partition an MDF datastore according to its files, and return partitions by index and file name.

cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files

ans =
 3×1 cell array
 'c:\temp\CANape1.MF4'
 'c:\temp\CANape2.MF4'
 'c:\temp\CANape3.MF4'

 partition (MDFDatastore)

13-147

subds2 = partition(mdfds,'files',2);
subds3 = partition(mdfds,'files','c:\temp\CANape3.MF4');

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

N — Number of partitions
positive integer

Number of partitions, specified as a double of positive integer value. Use the numpartitions
function for the recommended number or partitions.
Example: numpartitions(mdfds)
Data Types: double

index — Index
positive integer

Index, specified as a double of positive integer value. When using the 'files' partition scheme, this
value corresponds to the index of the MDF datastore object Files property.
Example: 1
Data Types: double

filename — File name
character vector

File name, specified as a character vector. The argument can specify a relative or absolute path.
Example: 'CANape.MF4'
Data Types: char

Output Arguments
subds — MDF datastore partition
MDF datastore object

MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same
type as the input datastore mdfds.

See Also
Functions
mdfDatastore | numpartitions | read | reset

Introduced in R2017b

13 Functions

13-148

preview (MDFDatastore)
Subset of data from MDF datastore

Syntax
data = preview(mdfds)

Description
data = preview(mdfds) returns a subset of data from MDF datastore mdfds without changing the
current position in the datastore.

Examples

Examine Preview of MDF Datastore
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = preview(mdfds)

data2 =

 10×74 timetable

 Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM
 ______________ __________ __________ __________ __________ ___

 0.00082554 sec 0 0 1 0 100
 0.010826 sec 0 0 1 0 100
 0.020826 sec 0 0 1 0 100
 0.030826 sec 0 0 1 0 100
 0.040826 sec 0 0 1 0 100
 0.050826 sec 0 0 1 0 100
 0.060826 sec 0 0 1 0 100
 0.070826 sec 0 0 1 0 100

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments
data — Subset of data
timetable

Subset of data, returned as a timetable of MDF records.

 preview (MDFDatastore)

13-149

See Also
Functions
hasdata | mdfDatastore | read

Introduced in R2017b

13 Functions

13-150

read
Read channel data from MDF-file

Syntax
data = read(mdfObj)
data = read(mdfObj,chanGroupIndex,chanName)
data = read(mdfObj,chanGroupIndex,chanName,startPosition)
data = read(mdfObj,chanGroupIndex,chanName,startPosition,endPosition)
data = read(mdfObj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType)
[data,time] = read(mdfObj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector')

Description
data = read(mdfObj) reads all data for all channels from the MDF-file identified by the MDF-file
object mdfObj, and assigns the output to data. If the file data is one channel group, the output is a
timetable; multiple channel groups are returned as a cell array of timetables, where the cell array
index corresponds to the channel group number.

data = read(mdfObj,chanGroupIndex,chanName) reads all data for the specified channel from
the MDF-file identified by the MDF-file object mdfObj.

data = read(mdfObj,chanGroupIndex,chanName,startPosition) reads data from the
position specified by startPosition.

data = read(mdfObj,chanGroupIndex,chanName,startPosition,endPosition) reads data
for the range specified from startPosition to endPosition.

data = read(mdfObj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType) returns data with the specified output format.

[data,time] = read(mdfObj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector') returns two vectors of channel data and
corresponding timestamps.

Examples

Read All Data from MDF-File

Read all available data from the MDF-file.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj);

 read

13-151

Read All Data from Multiple Channels

Read all available data from the MDF-file for specified channels.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'});

Read Range of Data from Specified Index Values

Read a range of data from the MDF-file using indexing for startPosition and endPosition to
specify the data range.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},1,10);

Read Range of Data from Specified Time Values

Read a range of data from the MDF-file using time values for startPosition and endPosition to
specify the data range.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},seconds(5.5),seconds(7.3));

Read All Data in Vector Format

Read all available data from the MDF-file, returning data and time vectors.

mdfObj = mdf('MDFFile.mf4');
[data,time] = read(mdfObj,1,'Channel1','OutputFormat','Vector');

Read All Data in Time Series Format

Read all available data from the MDF-file, returning time series data.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,'Channel1','OutputFormat','TimeSeries');

Read Data from Channel List Entry

Read data from a channel identified by the channelList function.

Get list of channels and display their names and group numbers.

mdfObj = mdf('File05.mf4');
chlist = channelList(mdfObj);
chlist(:,1:2)

 4×2 table

13 Functions

13-152

 ChannelName ChannelGroupNumber
 ____________________________________ __________________

 "Float_32_LE_Offset_64" 2
 "Float_64_LE_Master_Offset_0" 2

Read data from the first channel in the list.

data = read(mdfObj,chlist{1,2},chlist{1,1});
data(1:5,:)

 5×1 timetable

 Time Float_32_LE_Offset_64
 ________ _____________________

 0 sec 5
 0.01 sec 5.1
 0.02 sec 5.2
 0.03 sec 5.3
 0.04 sec 5.4

Input Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, specified as an MDF-file object.
Example: mdf('MDFFile.mf4')

chanGroupIndex — Index of the channel group
numeric value

Index of channel group, specified as a numeric value that identifies the channel group from which to
read.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

chanName — Name of channel
char vector | string

Name of channel, specified as a character vector, string, or array. chanName identifies the name of a
channel in the channel group. Use a cell array of character vectors or array of string to identify
multiple channels.
Example: 'Channel1'
Data Types: char | string | cell

startPosition — First position of channel data
numeric value | duration

First position of channel data, specified as a numeric value or duration. The startPosition option
specifies the first position from which to read channel data. Provide a numeric value to specify an
index position; use a duration to specify a time position. If only startPosition is provided without
the endPosition option, the data value at that location is returned. When used with endPosition

 read

13-153

to specify a range, the function returns data from the startPosition (inclusive) to the
endPosition (noninclusive).
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
duration

endPosition — Last position of channel data range
numeric value | duration

Last position of channel data range, specified as a numeric value or duration. The endPosition
option specifies the last position for reading a range of channel data. Provide both the
startPosition and endPosition to specify retrieval of a range of data. The function returns up to
but not including endPosition when reading a range. Provide a numeric value to specify an index
position; use a duration to specify a time position.
Example: 1000
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
duration

fmtType — Format for output data
'Timetable' (default) | 'Vector' | 'TimeSeries'

Format for output data, specified as a character vector or string. This option formats the output
according to the following table.

OutputFormat Description
'Timetable' Return a timetable from one or more channels into one output variable.

This is the only format allowed when reading from multiple channels at the
same time. (Default.)

Note: The timetable format includes columns for the MDF channels.
Because the column titles must be valid MATLAB identifiers, they might
not be exactly the same as those values in the MDF object ChannelNames
property. The column headers are derived from the property using the
function matlab.lang.makeValidName. The original channel names are
available in the VariableDescriptions property of the timetable
object.

'Vector' Return a vector of numeric data values, and optionally a vector of time
values from one channel. Use one output variable to return only data, or
two output variables to return both data and time vectors.

'TimeSeries' Return a time series of data from one channel.

Example: 'Vector'
Data Types: char | string

Output Arguments
data — Channel data
timetable (default) | double | time series | cell array

13 Functions

13-154

Channel data, returned as vector of doubles, a time series, a timetable, or cell array of timetables,
according to the 'OutputFormat' option setting and the number of channel groups.

time — Channel data times
double

Channel data times, returned as a vector of double elements. The time vector is returned only when
the 'OutputFormat' is set to 'Vector'.

See Also
Functions
mdf | mdfInfo | mdfSort | mdfVisualize | saveAttachment

Topics
“Access MDF Files”
“Reading Data from MDF Files”
“Time Series” (MATLAB)
“Represent Dates and Times in MATLAB” (MATLAB)
“Tables” (MATLAB)

Introduced in R2016b

 read

13-155

read (MDFDatastore)
Read data in MDF datastore

Syntax
data = read(mdfds)
[data,info] = read(mdfds)

Description
data = read(mdfds) returns data from the MDF datastore mdfds into the timetable data.

The read function returns a subset of data from the datastore. The size of the subset is determined
by the ReadSize property of the datastore object. On the first call, read starts reading from the
beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous
call. Use reset to read from the beginning again.

[data,info] = read(mdfds) also returns to the output argument info information, including
metadata, about the extracted data.

Examples

Read Datastore by Files

Read data from an MDF datastore one file at a time.

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);

Read the second file and view information about the data.
[data2,info2] = read(mdfds);
info2

 struct with fields:

 Filename: 'CANape2.MF4'
 FileSize: 57592
 MDFFileProperties: [1×1 struct]

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

13 Functions

13-156

Output Arguments
data — Output data
timetable

Output data, returned as a timetable of MDF records.

info — Information about data
structure array

Information about data, returned as a structure array with the following fields:

Filename
FileSize
MDFFileProperties

See Also
Functions
hasdata | mdfDatastore | preview | readall | reset

Topics
“Using MDF Files Via MDF Datastore”

Introduced in R2017b

 read (MDFDatastore)

13-157

readall (MDFDatastore)
Read all data in MDF datastore

Syntax
data = readall(mdfds)

Description
data = readall(mdfds) reads all the data in the datastore specified by mdfds and returns it to
timetable data.

After the readall function returns all the data, it resets mdfds to point to the beginning of the
datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

Examples

Read All Data in Datastore

Read all the data from a multiple file MDF datastore into a timetable.

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds);

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments
data — Output data
timetable

Output data, returned as a timetable of MDF records.

See Also
Functions
hasdata | mdfDatastore | preview | read | reset

Topics
“Using MDF Files Via MDF Datastore”

13 Functions

13-158

Introduced in R2017b

 readall (MDFDatastore)

13-159

readAxis
Read and scale specified axis value from direct memory

Syntax
value = readAxis(chanObj,axis)

Description
value = readAxis(chanObj,axis) reads and scales a value for the specified axis through the
XCP channel object chanObj. This action performs a direct read from memory on the slave module.

Examples

Read Value from XCP Channel Axis

Read the value from an XCP channel axis, identifying the axis by name.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
value = readAxis(chanObj,'pedal_position');

Alternatively, create an axis object and read its value.

axisObj = a2lObj.AxisXs('pedal_position');
value = readAxis(chanObj,axisObj);

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

axis — XCP channel axis
axis object | char

XCP channel axis, specified as a character vector or axis object.
Example: 'pedal_position'
Data Types: char

Output Arguments
value — Value from axis read
axis value

13 Functions

13-160

Value from axis read, returned as type supported by the axis.

See Also
Functions
readCharacteristic | readMeasurement | writeAxis | writeCharacteristic |
writeMeasurement

Introduced in R2018a

 readAxis

13-161

readCharacteristic
Read and scale specified axis value from direct memory

Syntax
value = readCharacteristic(chanObj,characteristic)

Description
value = readCharacteristic(chanObj,characteristic) reads and scales a value for the
specified characteristic through the XCP channel object chanObj. This action performs a direct
read from memory on the slave module.

Examples

Read Value from XCP Channel Characteristic

Read the value from an XCP channel characteristic, identifying the characteristic by name.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
value = readCharacteristic(chanObj,'torque_demand');

Alternatively, create a characteristic object and read its value.

charObj = a2lObj.CharacteristicInfo('torque_demand');
value = readCharacteristic(chanObj,charObj);

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

characteristic — XCP channel characteristic
characteristic object | char

XCP channel characteristic, specified as a character vector or characteristic object.
Example: 'torque_demand'
Data Types: char

13 Functions

13-162

Output Arguments
value — Value from characteristic read
characteristic value

Value from characteristic read, returned as a type supported by the characteristic.

See Also
Functions
readAxis | readMeasurement | writeAxis | writeCharacteristic | writeMeasurement

Introduced in R2018a

 readCharacteristic

13-163

readDAQ
Read scaled samples of specified measurement from DAQ list

Syntax
value = readDAQ(xcpch,measurementName)
value = readDAQ(xcpch,measurementName,count)

Description
value = readDAQ(xcpch,measurementName) reads and scales all acquired DAQ list data from
the XCP channel object xcpch, for the specified measurementName, and stores the results in the
variable value. If the measurement has no data, the function returns an empty value.

value = readDAQ(xcpch,measurementName,count) reads the quantity of data specified by
count. If fewer than count samples are available, it returns only those.

Examples

Acquire Data from DAQ List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and acquire 10 data values, then all data.

a2lObj = xcpA2L('myFile.a2l');
channelObj = xcpChannel(a2lObj,'CAN','Vector','CANcaseXL 1',1);
connect(channelObj);
createMeasurementList(channelObj,'DAQ','Event1','Measurement1');
startMeasurement(channelObj);
data = readDAQ(channelObj,'Measurement1',10);
data_all = readDAQ(channelObj,'Measurement1');

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

count — Number of samples to read
numeric value

13 Functions

13-164

Number of samples to read, specified as a numeric value, for the specified measurement name. If the
number of samples in the measurement is less than the specified count, only the available number of
samples are returned.

Output Arguments
value — Values from specified measurement
numeric array

Values from the specified measurement, returned as a numeric array.

See Also
readSingleValue

Introduced in R2018b

 readDAQ

13-165

readDAQListData
Read samples of specified measurement from DAQ list

Syntax
value = readDAQListData(xcpch,measurementName)
value = readDAQListData(xcpch,measurementName,count)

Description
value = readDAQListData(xcpch,measurementName) reads all acquired DAQ list data from the
XCP channel object xcpch, for the specified measurementName, and stores the results in the
variable value. If the measurement has no data, the function returns an empty value.

value = readDAQListData(xcpch,measurementName,count) reads the quantity of data
specified by count. If fewer than count samples are available, it returns only those.

Examples

Acquire Data for Triangle Measurement in a DAQ List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and acquire data from a '100ms' events 'Triangle' measurement.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel to the slave.

connect(xcpch)

Create a measurement list with a '100ms' event and 'PMW', 'PWMFiltered', and 'Triangle'
measurements.
createMeasurementList(xcpch,'DAQ','100ms',{'PMW','PWMFiltered','Triangle'})

Start the measurement.

startMeasurement(xcpch)

Acquire data for the 'Triangle' measurement for 5 counts.

value = readDAQListData(xcpch,'Triangle',5)

13 Functions

13-166

value =

 -50 -50 -50 -50 -50

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

count — Number of samples to read
numeric value

Number of samples to read, specified as a numeric value, for the specified measurement name. If the
number of samples in the measurement is less than the specified count, only the available number of
samples are returned.

Output Arguments
value — Values from specified measurement
numeric array

Values from the specified measurement, returned as a numeric array.

See Also
readSingleValue

Topics
“Acquire Measurement Data via Dynamic DAQ Lists” on page 8-9

Introduced in R2013a

 readDAQListData

13-167

readMeasurement
Read and scale specified measurement value from direct memory

Syntax
value = readMeasurement(chanObj,measurement)

Description
value = readMeasurement(chanObj,measurement) reads and scales a value for the specified
measurement through the XCP channel object chanObj. This action performs a direct read from
memory on the slave module.

Examples

Read Value from XCP Channel Measurement

Read the value from an XCP channel measurement, identifying the measurement by name.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
value = readMeasurement(chanObj,'limit')

 100

Alternatively, create a measurement object and read its value.

measObj = a2lObj.MeasurementInfo('limit');
value = readMeasurement(chanObj,measObj)

 100

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

measurement — XCP channel measurement
measurement object | char

XCP channel measurement, specified as a character vector or measurement object.
Example: 'limit'
Data Types: char

13 Functions

13-168

Output Arguments
value — Value from measurement read
measurement value

Value from measurement read, returned as a type supported by the measurement.

See Also
Functions
readAxis | readCharacteristic | writeAxis | writeCharacteristic | writeMeasurement

Introduced in R2018a

 readMeasurement

13-169

readSingleValue
Read single sample of specified measurement from memory

Syntax
value = readSingleValue(xcpch,'measurementName')

Description
value = readSingleValue(xcpch,'measurementName') acquires a single value for the
specified measurement through the configured XCP channel and stores it in a variable for later use.
The values are read directly from memory.

Examples

Acquire a Single Value for Triangle Measurement

Read a single value from a '100ms' events 'Triangle' measurement.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1);

Connect the channel to the slave module.

connect(xcpch)

Acquire data for the 'Triangle' measurement.

value = readSingleValue(xcpch, 'Triangle')

value =

 14

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.

13 Functions

13-170

Data Types: char | string

Output Arguments
value — Value of the measurement
numeric value

Value of the selected measurement, returned as a numeric value.

See Also
readDAQListData

Introduced in R2013a

 readSingleValue

13-171

receive
Receive messages from CAN bus

Syntax
message = receive(canch,messagesrequested,'OutputFormat','timetable')
message = receive(canch,messagesrequested)

Description
message = receive(canch,messagesrequested,'OutputFormat','timetable') returns a
timetable of CAN messages received on the CAN channel canch. The number of messages returned
is less than or equal to messagesrequested. If fewer messages are available than
messagesrequested specifies, the function returns the currently available messages. If no
messages are available, the function returns an empty array. If messagesrequested is Inf, the
function returns all available messages.

To understand the elements of a message, refer to canMessage.

Specifying the 'OutputFormat' option value of 'timetable' results in a timetable of messages.
This output format is recommended for optimal performance and representation of CAN messages
within MATLAB.

message = receive(canch,messagesrequested) returns an array of CAN message objects
instead of a timetable if the channel ProtocolMode is 'CAN'.

Note If the channel ProtocolMode is 'CAN FD' the receive function returns a timetable, whether
you specify an 'OutputFormat' or not.

Examples

Receive CAN Messages

You can receive CAN messages as a timetable or as an array of message objects.

Receive all available messages as a timetable.

canch = canChannel('Vector','CANCaseXL 1',1)
start(canch)
message = receive(canch,Inf,'OutputFormat','timetable')

Receive up to five messages as an array of message objects.

13 Functions

13-172

message = receive(canch,5)

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus.
Example: canChannel

messagesrequested — Maximum number of messages to receive
numeric value | Inf

Maximum number of messages to receive, specified as a positive numeric value or Inf.
Example: Inf
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
message — CAN messages
timetable | CAN message object array

CAN messages from the channel, returned as a timetable of messages or an array of CAN message
objects.

See Also
Functions
canChannel | canMessage | transmit

Introduced in R2009a

 receive

13-173

receive (J1939)
Receive parameter groups from J1939 bus

Syntax
pgrp = receive(chan,count)

Description
pgrp = receive(chan,count) receives parameter groups from the bus via channel chan. The
number of received parameter groups is limited to the value of count.

Examples

Receive Parameter Groups from Bus

Receive all the available parameter groups from the bus by specifying a count of Inf.

db = canDatabase('MyDatabase.dbc')
chan = j1939Channel(db,'Vector','CANCaseXL 1',1)
start(chan)
pgrp = receive(chan,Inf)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

count — Maximum number of parameter groups
double

Maximum number of parameter groups to receive, specified as a double. count must be a positive
value, or Inf to specify all available parameter groups.
Data Types: double

Output Arguments
pgrp — J1939 parameter groups
array of ParameterGroup objects

J1939 parameter groups, returned as an array of ParameterGroup objects.

13 Functions

13-174

See Also
Functions
j1939Channel | start | transmit

Introduced in R2015b

 receive (J1939)

13-175

replay
Retransmit messages from CAN bus

Syntax
replay(canch,message)

Description
replay(canch,message) retransmits the message or messages message on the channel canch,
based on the relative differences of their timestamps. The replay function also replays messages from
MATLAB to Simulink.

To understand the elements of a message, refer to canMessage.

Examples

Replay Messages on CAN Channel

Use a loopback connection between two channels, so that:

• The first channel transmits messages 2 seconds apart.
• The second channel receives them.
• The replay function retransmits the messages with the original delay.

The timestamp differentials between messages in the two receive arrays, msgRx1 and msgRx2, are
equal.
ch1 = canChannel('Vector','CANcaseXL 1',1);
ch2 = canChannel('Vector','CANcaseXL 1',2);
start(ch1)
start(ch2)
msgTx1 = canMessage(500,false,8);
msgTx2 = canMessage(750,false,8);

% The first channel transmits messages 2 seconds apart.
transmit(ch1,msgTx1)
pause(2)
transmit(ch1,msgTx2)
%The second channel receives them
msgRx1 = receive(ch2,Inf);

% The replay function retransmits the messages with the original delay.
replay(ch2,msgRx1)
pause(2)
msgRx2 = receive(ch1,Inf);

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to retransmit.

13 Functions

13-176

Example: canChannel('NI','CAN1')

message — Messages to replay
array of message objects

Messages to replay, specified as an array of message objects.

See Also
Functions
canMessage | transmit

Introduced in R2009a

 replay

13-177

reset (MDFDatastore)
Reset MDF datastore to initial state

Syntax
reset(mdfds)

Description
reset(mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data
has been read from it. Resetting allows your to reread from the same datastore.

Examples

Reset MDF Datastore

Reset an MDF datastore so that you can read from it again.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

See Also
Functions
hasdata | mdfDatastore | read

Introduced in R2017b

13 Functions

13-178

saveAttachment
Save attachment from MDF-file

Syntax
saveAttachment(mdfObj,AttachmentName)
saveAttachment(mdfObj,AttachmentName,DestFile)

Description
saveAttachment(mdfObj,AttachmentName) saves the specified attachment from the MDF-file to
the current MATLAB working folder. The attachment is saved with its existing name.

saveAttachment(mdfObj,AttachmentName,DestFile) saves the specified attachment from the
MDF-file to the given destination. You can specify relative or absolute paths to place the attachment
in a specific folder.

Examples

Save Attachment with Original Name

Save an MDF-file attachment with its original name in the current folder.

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext')

Save Attachment with New Name

Save an MDF-file attachment with a new name in the current folder.

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','MyFile.ext')

Save Attachment in Parent Folder

Save an MDF-file attachment in a folder specified with a relative path name, in this case in the parent
of the current folder.

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','..\MyFile.ext')

Save Attachment in Specified Folder

This example saves an MDF-file attachment using an absolute path name.

 saveAttachment

13-179

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','C:\MyDir\MyFile.ext')

Input Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, specified as an MDF-file object.
Example: mdf('MDFFile.mf4')

AttachmentName — MDF-file attachment name
char vector | string

MDF-file attachment name, specified as a character vector or string. The name of the attachment is
available in the Name field of the MDF-file object Attachment property.
Example: 'file1.dbc'
Data Types: char | string

DestFile — Destination file name for the saved attachment
existing attachment name (default) | char vector | string

Destination file name for the saved attachment, specified as a character vector or string. The
specified destination can include an absolute or relative path, otherwise the attachment is saved in
the current folder.
Example: 'MyFile.ext'
Data Types: char | string

See Also
Functions
mdf | read

Introduced in R2016b

13 Functions

13-180

setValue
Set instance value in CDFX object

Syntax
setValue(cdfxObj,instName,iVal)
setValue(cdfxObj,instName,sysName,iVal)

Description
setValue(cdfxObj,instName,iVal) sets the value of the unique instance whose ShortName is
specified by instName to iVal. If multiple instances share the same ShortName, the function
returns an error.

setValue(cdfxObj,instName,sysName,iVal) sets the value of the instance whose ShortName
is specified by instName and is contained in the system specified by sysName.

Note setValue does not write the instance value in the original CDFX-file. Use the write function
to update the CDFX-file or to create a new file.

Examples

Set Value of Instance

Create an asam.cdfx object and set the value of its VALUE_NUMERIC instance.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
setValue(cdfxObj,'VALUE_NUMERIC',55)

Read back the value to verify it.

iVal = getValue(cdfxObj,'VALUE_NUMERIC')

iVal =

 55

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

instName — Instance name
char | string

 setValue

13-181

Instance name, specified as a character vector or string.
Example: 'NUMERIC_VALUE'
Data Types: char | string

sysName — Parent system name
char | string

Parent system name, specified as a character vector or string.
Example: 'System2'
Data Types: char | string

iVal — Instance value
instance type

Instance value, specified as the type supported by the instance.
Example: 55

See Also
Functions
cdfx | getValue | instanceList | systemList | write

Introduced in R2019a

13 Functions

13-182

signalInfo
Information about signals in CAN message

Syntax
SigInfo = signalInfo(candb,msgName)
SigInfo = signalInfo(candb,id,extended)
SigInfo = signalInfo(candb,id,extended,signalName)

Description
SigInfo = signalInfo(candb,msgName) returns information about the signals in the specified
CAN message msgName in the specified database candb.

SigInfo = signalInfo(candb,id,extended) returns information about the signals in the
message with the specified standard or extended ID id in the specified database candb.

SigInfo = signalInfo(candb,id,extended,signalName) returns information about the
specified signal 'signalName' in the message with the specified standard or extended ID id in the
specified database candb.

Examples

Use Message Name to Get Information

Get signal information from the message 'Battery_Voltage'.

SigInfo = signalInfo(candb,'Battery_Voltage');

Use Message ID to Get Information

Get signal information from the message with ID 196608.

SigInfo = signalInfo(candb,196608,true);

Use Signal Name to Get Information

Get information from the signal named 'BatVlt' from message 196608.

SigInfo = signalInfo(candb,196608,true,'BatVlt');

Input Arguments
candb — CAN database
CAN database object

 signalInfo

13-183

CAN database, specified as a CAN database object, that contains the signals that you want
information about.
Example: candb = canDatabase('C:\Database.dbc')

msgName — Message name
character vector | string

Message name, specified as a character vector or string. Provide the name of the message that
contains the signals that you want information about.
Example: 'Battery_Voltage'
Data Types: char | string

id — Message identifier
numeric value

Message identifier, specified as a numeric value. Provide the numeric identifier of the specified
message that contains the signals you want information about.
Example: 196608

extended — Extended message indicator
true | false

Extended message indicator, specified as true or false. Indicate whether the message ID is
standard or extended type. Use the logical value true if extended, or false if standard.
Example: true
Data Types: logical

signalName — Name of signal
char vector | string

Name of the signal, specified as a character vector or string. Provide the name of the specific signal
that you want information about.
Example: 'BatVlt'
Data Types: char | string

Output Arguments
SigInfo — Signal information
struct or array of struct

Signal information, returned as a structure or array of structures.
Data Types: struct

See Also
Functions
canDatabase | canMessage | messageInfo

13 Functions

13-184

Properties
MessageInfo | Messages

Introduced in R2009a

 signalInfo

13-185

start
Set CAN channel online

Syntax
start(canch)

Description
start(canch) starts the CAN channel canch on the CAN bus to send and receive messages. The
CAN channel remains online until:

• You call stop on this channel.
• You clear the channel from the workspace.

Note Before you can start a channel to transmit or receive CAN FD messages, you must configure its
bus speed with configBusSpeed.

Examples

Start a CAN Channel

Start a virtual device CAN channel.

canch = canChannel('MathWorks','Virtual 1',1);
start(canch)

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, that you want to start.
Example: canChannel('NI','CAN1')

See Also
Functions
canChannel | configBusSpeed | stop

Introduced in R2009a

13 Functions

13-186

start (J1939)
Start channel connection to J1939 bus

Syntax
start(chan)

Description
start(chan) activates the channel chan on a J1939 bus. The channel remains activated until stop
is called or it is cleared from the memory.

Examples

Start J1939 Channel

Activate a channel on a J1939 bus.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

See Also
Functions
j1939Channel | stop

Introduced in R2015b

 start (J1939)

13-187

startMeasurement
Start configured DAQ and STIM lists

Syntax
startMeasurement(xcpch)

Description
startMeasurement(xcpch) starts all configured data acquisition and stimulation lists on the
specified XCP channel. When you start the measurement, configured DAQ lists begin acquiring data
values from the slave module and STIM lists begin transmitting data values to the slave model.

Examples

Start a DAQ Measurement

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and start measuring data.

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2l, 'CAN', 'Vector', 'Virtual 1', 1),

xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the slave module.

connect(xcpch)

Setup a data acquisition measurement list with the ‘10 ms’ event and 'Bitslice' measurement.

createMeasurementList(xcpch, 'DAQ', '10 ms', 'BitSlice')

Start your measurement.

startMeasurement(xcpch);

Start a STIM Measurement

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and start measuring data.

13 Functions

13-188

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2l,'CAN','Vector','Virtual 1',1)
xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the slave module.

connect(xcpch)

Setup a data stimulation measurement list with the ‘100ms’ event and 'Bitslice0',
'PWMFiletered', and 'Triangle'measurements.
createMeasurementList(xcpch,'STIM','100ms',{'BitSlice0','PWMFiletered','Triangle'})

Start your measurement.

startMeasurement(xcpch);

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

See Also
stopMeasurement | xcpChannel

Introduced in R2013a

 startMeasurement

13-189

stop
Set CAN channel offline

Syntax
stop(canch)

Description
stop(canch) stops the CAN channel canch on the CAN bus. The CAN channel also stops running
when you clear canch from the workspace.

Examples

Stop a CAN Channel

Stop a virtual device CAN channel.

canch = canChannel('MathWorks','Virtual 1',1);
start(canch)
stop(canch)

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, that you want to stop.
Example: canChannel('NI','CAN1')

See Also
canChannel | start

Introduced in R2009a

13 Functions

13-190

stop (J1939)
Stop channel connection to J1939 bus

Syntax
stop(chan)

Description
stop(chan) deactivates the channel chan on a J1939 bus. The channel also deactivates when it is
cleared from the memory.

Examples

Stop J1939 Channel

Deactivate a channel on a J1939 bus.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)

stop(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

See Also
Functions
j1939Channel | start

Introduced in R2015b

 stop (J1939)

13-191

stopMeasurement
Stop configured DAQ and STIM lists

Syntax
stopMeasurement(xcpch)

Description
stopMeasurement(xcpch) stops all configured data acquisition and stimulation lists on the
specified XCP channel. When you stop the measurement, configured DAQ lists stop acquiring data
values from the slave module and STIM lists stop transmitting data values to the slave model.

Examples

Stop a DAQ Measurement

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and start and stop measuring data.

a2l = xcp2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1)

xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the slave module.

connect(xcpch)

Setup a data acquisition measurement list with the ‘10 ms’ event and 'Bitslice' measurement and
start your measurement.

createMeasurementList(xcpch,'DAQ','10 ms','BitSlice')
startMeasurement(xcpch);

Stop your measurement.

13 Functions

13-192

stopMeasurement(xcpch);

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

See Also
startMeasurement | xcpChannel

Introduced in R2013a

 stopMeasurement

13-193

systemList
ECU systems in the CDFX object

Syntax
sList = systemList(cdfxObj)
sList = systemList(cdfxObj,sysName)

Description
sList = systemList(cdfxObj) returns a table listing every electronic control unit (ECU) system
in the CDFX object.

sList = systemList(cdfxObj,sysName) returns a table listing every ECU system in the CDFX
object whose ShortName matches SysName.

Examples

View CDFX Object Systems

Create an asam.cdfx object and view its ECU systems.

List all systems.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
sList = systemList(cdfxObj)

sList =

 1×3 table

 ShortName Instances Metadata
 _________ _____________ ________

 "System1" [1×16 string] ""

Match a specified system.

sList = systemList(cdfxObj,'System1');

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

sysName — Parent system name
string

13 Functions

13-194

Parent system name, specified as a string.
Example: "System2"
Data Types: string

Output Arguments
sList — ECU system list
table

ECU system list, returned as a table.

See Also
Functions
cdfx | getValue | instanceList | setValue | write

Introduced in R2019a

 systemList

13-195

transmit
Send CAN messages to CAN bus

Syntax
transmit(canch,message)

Description
transmit(canch,message) sends the message or array of messages onto the bus via the CAN
channel.

For more information on the elements of a message, see canMessage.

Note The transmit function ignores the Timestamp property and the Error property.

CAN is a peer-to-peer network, so when transmitting messages on a physical bus at least one other
node must be present to properly acknowledge the message. Without another node, the transmission
will fail as an error frame, and the device will continually retry to transmit.

Examples
Transmit a CAN Message

Define a CAN message and transmit it to the CAN bus.

message = canMessage (250,false,8);
message.Data = ([45 213 53 1 3 213 123 43]);
canch = canChannel('MathWorks','Virtual 1',1);
start(canch)
transmit(canch,message)

Transmit an Array of Messages

Transmit an array of three CAN messages.

transmit(canch,[message0,message1,message2])

Transmit Messages on a Remote Frame

Transmit a CAN message on a remote frame, using the message Remote property.

message = canMessage(250,false,8);
message.Data = ([45 213 53 1 3 213 123 43]);
message.Remote = true;
canch = canChannel('MathWorks','Virtual 1',1);
start(canch)
transmit(canch,message)

13 Functions

13-196

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus.

message — Message to transmit
CAN message object or array of objects

Message to transmit, specified as a CAN message object or array of message objects. These messages
are transmitted via a CAN channel to the bus.

See Also
Functions
canChannel | canMessage | receive

Introduced in R2009a

 transmit

13-197

transmit (J1939)
Send parameter groups via channel to J1939 bus

Syntax
transmit(chan,pgrp)

Description
transmit(chan,pgrp) sends the specified parameter groups in the array pgrp onto the J1939 bus
via the channel chan.

Examples

Send Parameter Groups onto Bus

Send the parameter group 'MyParameterGroup' to the bus.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)
pgrp = j1939ParameterGroup(db,'MyParameterGroup')
transmit(chan,pgrp)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

pgrp — J1939 parameter groups
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup function to create and define the ParameterGroup objects.

See Also
Functions
j1939Channel | j1939ParameterGroup | receive | start

Introduced in R2015b

13 Functions

13-198

transmitConfiguration
Display messages configured for automatic transmission

Syntax
transmitConfiguration(canch)

Description
transmitConfiguration(canch) displays information about all messages in the CAN channel,
canch, configured for periodic transmit or event-based transmit.

For more information on periodic transmit of messages, refer to transmitPeriodic.

For more information on event-based transmit of messages, refer to transmitEvent.

Examples

Configure and View Message Transmit Settings

Create two messages with different transmit settings, then view those settings.

Create a CAN channel with two messages.

canch = canChannel('Vector','Virtual 1',1);
msg1 = canMessage(500,false,8);
msg2 = canMessage(750,false,8);

Configure the transmit settings for msg1 and msg2.

transmitEvent(canch,msg1,'On');
transmitPeriodic(canch,msg2,'On',1);

Display the transmit configuration for the messages on canch .

transmitConfiguration(canch)

Periodic Messages

ID Extended Name Data Rate (seconds)
--- -------- ---- ---------------- --------------
750 false 0 0 0 0 0 0 0 0 1.000000

Event Messages

ID Extended Name Data

 transmitConfiguration

13-199

--- -------- ---- ----------------
500 false 0 0 0 0 0 0 0 0

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus for periodic or event-based transmission.

See Also
Functions
canChannel | canMessage | transmitEvent | transmitPeriodic

Introduced in R2010b

13 Functions

13-200

transmitEvent
Configure messages for event-based transmission

Syntax
transmitEvent(canch,msg,state)

Description
transmitEvent(canch,msg,state) enables or disables an event-based transmit of the CAN
message, msg, on the channel, according to the state argument of 'On' or 'Off'. A typical event
that triggers a transmission is a change to the message Data property.

Examples

Enable an Event-Based Message

Configure a channel with an event-based message.

Construct a CAN channel and configure a message on the channel.

canch = canChannel('MathWorks','Virtual 1',1);
msg = canMessage(200,false,4);

Enable the message for event-based transmit, start the channel, and pack the message to trigger the
event-based transmit.

transmitEvent(canch,msg,'On');
start(canch);
pack(msg,int32(1000),0,32,'LittleEndian')

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus, and the channel on which the specified message is enabled for event-based transmit.

msg — Message to transmit
CAN message object or array of objects

Message to transmit, specified as a CAN message object or array of message objects. This is the
message enabled for event-based transmission on the specified CAN channel.

state — Enable event-based transmission
'On' | 'Off'

Enable event-based transmission, specified as 'On' or 'Off'.

 transmitEvent

13-201

Example: 'On'
Data Types: char | string

See Also
Functions
canChannel | canMessage | transmitConfiguration | transmitPeriodic

Introduced in R2010b

13 Functions

13-202

transmitPeriodic
Configure messages for periodic transmission

Syntax
transmitPeriodic(canch,msg,'On',period)
transmitPeriodic(canch,msg,'Off')

Description
transmitPeriodic(canch,msg,'On',period) enables periodic transmit of the message, msg, on
the channel, canch, to transmit at the specified period, period.

You can enable and disable periodic transmit even when the channel is running, allowing you to make
changes to the state of the channel without stopping it.

transmitPeriodic(canch,msg,'Off') disables periodic transmission of the message, msg.

Examples

Transmit a Message Periodically

Configure a channel to transmit messages periodically.

Construct a CAN channel and message.

canch = canChannel('MathWorks','Virtual 1',1);
msg = canMessage(500,false,4);

Enable the message for periodic transmission on the channel, with a period of 1 second. Start the
channel, and pack the message you want to send periodically.

transmitPeriodic(canch,msg,'On',1);
start(canch);
pack(msg,int32(1000),0,32,'LittleEndian')

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the CAN channel for which you are
controlling periodic transmission.

msg — Message to transmit
CAN message object or array of objects

Message to transmit, specified as a CAN message object or array of message objects. This is the
message enabled for periodic transmission on the specified CAN channel.

 transmitPeriodic

13-203

period — Period of transmissions
0.500 (default) | numeric value

Period of transmissions, specified in seconds as a numeric value. This argument is optional, with a
default of 0.5 seconds.
Example: 1.0
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
Functions
canChannel | canMessage | transmitConfiguration | transmitEvent

Introduced in R2010b

13 Functions

13-204

unpack
Unpack signal data from CAN message

Syntax
value = unpack(message,startbit,signalsize,byteorder,datatype)

Description
value = unpack(message,startbit,signalsize,byteorder,datatype) takes a set of input
parameters to unpack the signal value from the message and returns the value as output.

Examples

Unpack Data from a CAN Message

Unpack the data value from a CAN message.

Unpack a 16-bit integer value.

message = canMessage(500,false,8);
pack(message,int16(1000),0,16,'LittleEndian')
value = unpack(message,0,16,'LittleEndian','int16')

value =

 int16

 1000

Unpack a 32-bit single value.

pack(message,single(-40),0,32,'LittleEndian')
value = unpack(message,0,32,"LittleEndian",'single')

value =

 single

 -40

Unpack a 64-bit double value.

pack(message,3.14,0,64,'LittleEndian')
value = unpack(message,0,64,'LittleEndian','double')

 unpack

13-205

value =

 3.1400

Input Arguments
message — CAN message
CAN message object

CAN message, specified as a CAN message object, from which to unpack the data.
Example: canMessage

startbit — Signal starting bit in data
single | double

Signal starting bit in the data, specified as a single or double value. This is the least significant bit
position in the signal data. Accepted values for startbit are from 0 through 63, inclusive.
Example: 0
Data Types: single | double

signalsize — Length of signal in bits
numeric value

Length of the signal in bits, specified as a numeric value. Accepted values for signalsize are from
1 through 64, inclusive.
Example: 16
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

byteorder — Signal byte order format
'LittleEndian' | 'BigEndian'

Signal byte order format, specified as 'LittleEndian' or 'BigEndian'.
Example: 'LittleEndian'
Data Types: char | string

datatype — Data type of unpacked value
char vector | string

Data type of unpacked value, specified as a character vector or string. The supported values are
'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single', and
'double'.
Example: 'double'
Data Types: char | string

Output Arguments
value — Value of message data
numeric value

13 Functions

13-206

Value of message data, returned as a numeric value of the specified data type.

See Also
Functions
canMessage | extractAll | extractRecent | extractTime | pack

Introduced in R2009a

 unpack

13-207

valueTableText
Look up value of table text for signal

Syntax
vtt = valueTableText(db,MsgName,SignalName,TableVal)

Description
vtt = valueTableText(db,MsgName,SignalName,TableVal) returns the text from the value
table for a specified message signal.

Examples

View Table Text for Signal

Create a CAN database object, and select a message and signal to retrieve their table text.

Identify a message.

db = canDatabase('J1939DB.dbc');
m = db.MessageInfo(1)

m =
 Name: 'A1'
 Comment: 'This is a A1message'
 ID: 419364350
 Extended: 1
 J1939: [1x1 struct]
 Length: 8
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]
 TxNodes: {'AerodynamicControl'}
 Attributes: {4x1 cell}
 AttributeInfo: [4x1 struct]

Select one of the message signals.

s = m.signalInfo(2)

s =
 Name: 'EngGasSupplyPress'
 Comment: 'Gage pressure of gas supply to fuel metering device.'
 StartBit: 8
 SignalSize: 16
 ByteOrder: 'LittleEndian'
 Signed: 0
 ValueType: 'Integer'
 Class: 'uint16'
 Factor: 0.5000
 Offset: 0
 Minimum: 0
 Maximum: 3.2128e+04
 Units: 'kPa'
 ValueTable: [4x1 struct]
 Multiplexor: 0

13 Functions

13-208

 Multiplexed: 0
 MultiplexMode: 0
 RxNodes: {'Aftertreatment_1_GasIntake'}
 Attributes: {3x1 cell}
 AttributeInfo: [3x1 struct]

Retrieve second table text for specified signal.

vtt = valueTableText(db,m.Name,s.Name,2)

vtt =
pump error

Input Arguments
db — CAN database
CAN database object

CAN database, specified as a CAN database object.
Example: db = canDatabase(_____)

MsgName — Message name
char vector | string

Message name, specified as a character vector or string. You can view available message names from
the db.Messages property.
Example: 'A1'
Data Types: char | string

SignalName — Signal name
char vector | string

Signal name, specified as a character vector or string. You can view available signal names from the
db.MessageInfo(n).Signals property.
Example: 'EngGasSupplyPress'
Data Types: char | string

TableVal — Table value
numeric value

Table value, specified as a numeric value.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
vtt — Table text
table text

Table text, returned as a character vector.

 valueTableText

13-209

See Also
Functions
attributeInfo | canDatabase | messageInfo | nodeInfo | signalInfo

Properties
MessageInfo | Messages

Introduced in R2015b

13 Functions

13-210

Vehicle CAN Bus Monitor
Monitor vehicle CAN bus message traffic

Description
The Vehicle CAN Bus Monitor displays live CAN message traffic.

Using this app, you can:

• View message traffic for a specified CAN device and channel.
• Save CAN bus messages to a log file.

Notes The Vehicle CAN Bus Monitor does not support the CAN FD protocol.

You cannot programmatically configure the Vehicle CAN Bus Monitor. However, you can use it to
independently visualize bus traffic generated on CAN channels by MATLAB or Simulink CAN blocks.

Open the Vehicle CAN Bus Monitor App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
• MATLAB command prompt: Enter canTool.

Examples
• “Using the Vehicle CAN Bus Monitor” on page 5-7

See Also
Functions
canTool

Topics
“Using the Vehicle CAN Bus Monitor” on page 5-7
“Vehicle CAN Bus Monitor” on page 5-2

Introduced in R2009a

 Vehicle CAN Bus Monitor

13-211

viewMeasurementLists
View configured measurement lists on XCP channel

Syntax
viewMeasurementLists(xcpch)

Description
viewMeasurementLists(xcpch) shows you all configured measurement list sets for this XCP
channel.

Examples

View DAQ Measurement Lists

Create an XCP channel and configure a data acquisition measurement list, then view the configured
measurement list.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1)

xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the slave module.

connect(xcpch)

Setup a data acquisition measurement list with the '10 ms' event and 'PMW' measurement.
createMeasurementList(xcpch, 'DAQ', '10 ms', {'BitSlice0','PWMFiltered','Triangle'});

Create another measurement list with the '100ms' event and 'PWMFiltered'and 'Triangle'
measurements.
createMeasurementList(xcpch, 'DAQ', '100ms', {'PWMFiltered','Triangle'});

view details of the measurement list.

viewMeasurementLists(xcpch)

DAQ List #1 using the "10 ms" event @ 0.010000 seconds and the following measurements:
 PMW

13 Functions

13-212

DAQ List #2 using the "100ms" event @ 0.100000 seconds and the following measurements:
 PWMFiltered
 Triangle

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

See Also
createMeasurementList | freeMeasurementLists

Introduced in R2013a

 viewMeasurementLists

13-213

write
Export data of CDFX object to file

Syntax
write(cdfxObj)
write(cdfxObj,CDFXfile)

Description
write(cdfxObj) exports the data contents of the asam.cdfx object to the file specified by the
Path property of the object.

write(cdfxObj,CDFXfile) exports the contents of the asam.cdfx object to the CDFX-file
specified by CDFXfile.

Examples

Write Modified Data to New CDFX-File

Create an asam.cdfx object with data from a file, modify the data in the object, and write it out to a
new file.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
setValue(cdfxObj,'VALUE_NUMERIC',55)
write(cdfxObj,'c:\DataFiles\AllCategories_NEW_VCD.cdfx')

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

CDFXfile — Calibration data format CDFX-file location
char | string

Calibration data format CDFX-file location, specified as a character vector or string. CDFXFile can
specify the file name in the current folder, or the full or relative path to the CDFX-file.
Example: 'ASAMCDFExample.cdfx'
Data Types: char | string

See Also
Functions
cdfx | getValue | instanceList | setValue | systemList

13 Functions

13-214

Introduced in R2019a

 write

13-215

writeAxis
Scale and write specified axis value to direct memory

Syntax
writeAxis(chanObj,axis,value)

Description
writeAxis(chanObj,axis,value) scales and writes a value for the specified axis through the
XCP channel object chanObj. This action performs a direct write to memory on the slave module.

Examples

Write Value to XCP Channel Axis

Write a value to an XCP axis and verify the value.

Read original value.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
axisObj = a2lObj.AxisXs('pedal_position');
value = readAxis(chanObj,axisObj)

 25

Write new value.

newValue = 50;
writeAxis(chanObj,axisObj,newValue);

Read value again to verify.

readAxis(chanObj,axisObj)

 50

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

axis — XCP channel axis
axis object | char

13 Functions

13-216

XCP channel axis, specified as a character vector or axis object.
Example: 'pedal_position'
Data Types: char

value — Value for axis write
axis value

Value for axis write, specified as type supported by the axis.

See Also
Functions
readAxis | readCharacteristic | readMeasurement | writeCharacteristic |
writeMeasurement

Introduced in R2018a

 writeAxis

13-217

writeCharacteristic
Scale and write specified characteristic value to direct memory

Syntax
writeCharacteristic(chanObj,characteristic,value)

Description
writeCharacteristic(chanObj,characteristic,value) scales and writes a value for the
specified characteristic through the XCP channel object chanObj. This action performs a direct
write to memory on the slave module.

Examples

Write Value to an XCP Channel Characteristic

Write a value to an XCP characteristic and verify the value.

Read the original value.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
charObj = a2lObj.CharacteristicInfo('torque_demand');
value = readCharacteristic(chanObj,charObj)'

 100

Write new value.

newValue = 200;
writeCharacteristic(chanObj,charObj,newValue');

Read value again to verify change.

readCharacteristic(chanObj,charObj)'

 200

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

characteristic — XCP channel characteristic
characteristic object | char

13 Functions

13-218

XCP channel characteristic, specified as a character vector or characteristic object.
Example: 'torque_demand'
Data Types: char

value — Value for characteristic write
characteristic value

Value for characteristic write, specified as a type supported by the characteristic.

See Also
Functions
readAxis | readCharacteristic | readMeasurement | writeAxis | writeMeasurement

Introduced in R2018a

 writeCharacteristic

13-219

writeMeasurement
Scale and write specified measurement value to direct memory

Syntax
writeMeasurement(chanObj,measurement,value)

Description
writeMeasurement(chanObj,measurement,value) scales and writes a value for the specified
measurement through the XCP channel object chanObj. This action performs a direct write to
memory on the slave module.

Examples

Write Value to an XCP Channel Measurement

Write a value to an XCP measurement, and verify the value.

Read original value.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
measObj = a2lObj.MeasurementInfo('limit');
value = readMeasurement(chanObj,measObj)

 100

Write a new value.

newValue = 120;
writeMeasurement(chanObj,measObj,newValue);

Read the value again to verify the change.

readMeasurement(chanObj,measObj)

 120

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

measurement — XCP channel measurement
measurement object | char

13 Functions

13-220

XCP channel measurement, specified as a character vector or measurement object.
Example: 'curve1_8_uc'
Data Types: char

value — Value for measurement write
measurement value

Value for measurement write, specified as a data type supported by the measurement.

See Also
Functions
readAxis | readCharacteristic | readMeasurement | writeAxis | writeCharacteristic

Introduced in R2018a

 writeMeasurement

13-221

writeSingleValue
Write single sample to specified measurement

Syntax
writeSingleValue(xcpch,measurementName,value)

Description
writeSingleValue(xcpch,measurementName,value) writes a single value to the specified
measurement through the configured XCP channel. The values are written directly to the memory on
the slave module.

Examples

Write a single value

Create an XCP channel and write a single value for the Triangle measurement directly to memory.

Link an A2L file to your session.

a2l = xcpA2L('XCPSIM.a2l')

Create an XCP channel and connect it to the slave module

xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1);
connect(xcpch)

Write the value 10 to the Triangle measurement.

writeSingleValue(xcpch, 'Triangle', 10)

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

value — Value of the measurement
numeric value

13 Functions

13-222

Value of the selected measurement, returned as a numeric value.

See Also
writeSTIMListData

Introduced in R2013a

 writeSingleValue

13-223

writeSTIM
Write scaled value of specified measurement to STIM list

Syntax
writeSTIM(xcpch,measurementName,value)

Description
writeSTIM(xcpch,measurementName,value) writes the scaled value to the specified
measurement on the XCP channel.

Examples

Write Scaled Data to a Measurement in a Stimulation List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a data
stimulation list and write to a specified measurement.

a2lObj = xcpA2L('myFile.a2l');
channelObj = xcpChannel(a2lObj,'CAN','Vector','CANcaseXL 1',1);
connect(channelObj);
createMeasurementList(channelObj,'STIM','Event1','Measurement1');
startMeasurement(channelObj);
writeSTIM(channelObj,'Measurement1',newValue);

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

value — Value of the measurement
numeric value

Value of the measurement, specified as a numeric value.

See Also
writeSingleValue

13 Functions

13-224

Introduced in R2018b

 writeSTIM

13-225

writeSTIMListData
Write to specified measurement

Syntax
writeSTIMListData(xcpch,measurementName,value)

Description
writeSTIMListData(xcpch,measurementName,value) writes the specified value to the
specified measurement on the XCP channel.

Examples

Write Data to a Measurement in a Stimulation List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up data
stimulation list and write to a '100ms' event’s 'Triangle' measurement.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel to the slave.

connect(xcpch)

Create a measurement list with the '100ms' event and 'Bitslice0', 'PWMFiltered', and
'Triangle' measurements.
createMeasurementList(xcpch,'STIM','100ms',{'BitSlice0','PWMFiltered','Triangle'});

Start the measurement.

startMeasurement(xcpch)

Write data to the 'Triangle' measurement.

writeSTIMListData(xcpch,'Triangle',10)

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified slave module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

13 Functions

13-226

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

value — Value of the measurement
numeric value

Value of the selected measurement, specified as a numeric value.

See Also
writeSingleValue

Introduced in R2013a

 writeSTIMListData

13-227

xcpA2L
Access A2L file

Syntax
a2lfile = xcpA2L(filename)

Description
a2lfile = xcpA2L(filename) creates an object that accesses an A2L file. The object can parse
the contents of the file and view events and measurement information.

Examples

Link to an A2L File

Create an A2L file object.

a2lfile = xcpA2L('XCPSIM.a2l')

Input Arguments
filename — A2L file name
character vector | string

A2L file name, specified as a character vector or string. You must provide the file ending .a2l with
the name. You can also provide a partial or full path to the file with the name.
Data Types: char | string

See Also
Functions
getEventInfo | getMeasurementInfo | xcpChannel

Topics
“Inspect the Contents of an A2L File” on page 7-2
“XCP Database and Communication Workflow” on page 6-2

Introduced in R2013a

13 Functions

13-228

xcpChannel
Create XCP channel

Syntax
xcpch = xcpChannel(a2lFile,'CAN',vendor,deviceID)
xcpch = xcpChannel(a2lFile,'CAN',vendor,deviceID,deviceChannelIndex)
xcpch = xcpChannel(a2lFile,'TCP',IPAddr,portNmbr)
xcpch = xcpChannel(a2lFile,'UDP',IPAddr,portNmbr)
xcpch = xcpChannel(a2lFile,'TCP')
xcpch = xcpChannel(a2lFile,'UDP')

Description
xcpch = xcpChannel(a2lFile,'CAN',vendor,deviceID) creates a channel connected to the
CAN bus via the specified vendor and device. The XCP channel accesses the slave module via the
CAN bus, parsing the attached A2L file.

Use this syntax for vendor 'PEAK-System' or 'NI'. With National Instruments CAN devices, the
deviceID argument must include the interface number defined for the channel in the NI
Measurement & Automation Explorer.

xcpch = xcpChannel(a2lFile,'CAN',vendor,deviceID,deviceChannelIndex) creates a
channel for the vendor 'Vector', 'Kvaser', or 'MathWorks'. Specify a numeric
deviceChannelIndex for the channel.

xcpch = xcpChannel(a2lFile,'TCP',IPAddr,portNmbr) or xcpch = xcpChannel(
a2lFile,'UDP',IPAddr,portNmbr) creates an XCP channel connected via Ethernet using TCP or
UDP on the specified IP address and port.

Note XCP communication over UDP or TCP assumes a generic Ethernet adaptor. It is not supported
on Ethernet connections of devices from specific vendors.

xcpch = xcpChannel(a2lFile,'TCP') and xcpch = xcpChannel(a2lFile,'UDP') use the
IP address and port number defined in the A2L file.

Examples

Create an XCP Channel Using a CAN Slave Module

Create an XCP channel using a Vector CAN module virtual channel.

Link an A2L file to your session.

a2l = xcpA2L('XCPSIM.a2l');

Create an XCP channel.

 xcpChannel

13-229

xcpch = xcpChannel(a2l,'CAN','Vector','Virtual 1',1)

xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: []

Create an XCP Channel for Ethernet

Create an XCP channel for TCP communication via Ethernet.

Link an A2L file to your session.

a2l = xcpA2L('XCPSIM.a2l');

Create an XCP channel.

xcpch = xcpChannel(a2l,'TCP','10.255.255.255',80)

xcpch =

 Channel with properties:

 SlaveName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'TCP'
 TransportLayerDevice: [1×1 struct]
 SeedKeyDLL: []

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

vendor — Device vendor
'NI' | 'Kvaser' | 'Vector' | 'PEAK-System' | 'MathWorks'

Device vendor name, specified as a character vector or string.
Example: 'Vector'
Data Types: char | string

deviceID — Device to connect to
character vector | string

Device on the interface to connect to, specified as a character vector or string.

13 Functions

13-230

For National Instruments CAN devices, this must include the interface number for the device
channel, defined in the NI Measurement & Automation Explorer.
Example: 'Virtual 1'
Data Types: char | string

deviceChannelIndex — Index of channel on device
numeric value

Index of channel on the device, specified as a numeric value.
Example: 1

IPAddr — IP address of device
char vector | string

IP address of the device, specified as a character vector or string
Example: '10.255.255.255'
Data Types: char | string

portNmbr — Port number for device connection
numeric

Port number for device connection, specified as a numeric value.
Example: 80

Output Arguments
xcpch — XCP channel
XCP channel object

XCP channel, returned as an object.

See Also
Functions
connect | disconnect | isConnected | xcpA2L

Introduced in R2013a

 xcpChannel

13-231

Properties

14

AttributeInfo
Information on CAN database attributes

Description
The Attributeinfo property is a structure with information about all attributes defined in the
specified CAN database.

Characteristics
Usage CAN database
Read only Always
Data type Structure

Values
The AttributeInfo property is a read-only structure. Use indexing to access the information of
each attribute.

Examples
Display Database Attribute Information

db = canDatabase('J1939DB.dbc');
db.AttributeInfo

3×1 struct array with fields:
 Name
 ObjectType
 DataType
 DefaultValue
 Value

db.AttributeInfo(1).Name

BusType

db.AttributeInfo(1).Value

CAN

See Also
Functions
attributeInfo | canDatabase

Properties
Attributes

14 Properties

14-2

Attributes
Attribute names from CAN database

Description
The Attributes property stores the names of all attributes defined in the specified CAN database.

Characteristics
Usage CAN database
Read only Always
Data type Cell array of character vectors

Values
The Attributes property displays a cell array of character vectors. You cannot edit this property.

Examples
Display Database Attributes

db = canDatabase('J1939DB.dbc');
db.Attributes

 'BusType'
 'DatabaseVersion'
 'ProtocolType'

db.Attributes{1}

BusType

See Also
Functions
attributeInfo | canDatabase

Properties
AttributeInfo

 Attributes

14-3

BusLoad
Load on CAN bus

Description
The BusLoad property displays information about the load on the CAN network for message traffic
on Kvaser devices.

Characteristics
Usage CAN channel
Read only Always
Data type Float

Values
The current message traffic on a CAN network is represented as a percentage ranging from 0.00% to
100.00%.

See Also
Functions

canChannel

14 Properties

14-4

BusSpeed
Bit rate of bus

Description
The BusSpeed property indicates the speed at which messages are transmitted in bits per second.
You can set BusSpeed to an acceptable bit rate using the configBusSpeed function.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Numerical

Values
The default value is assigned by the vendor driver. To change the bus speed of your channel, use the
configBusSpeed function with the channel name and the value as input parameters.

Examples
Change the bus speed of the CAN channel object canch to 250,000 bits per second, and view the
result.

configBusSpeed(canch,250000);
bs = canch.BusSpeed

See Also
Functions

canChannel, j1939Channel, configBusSpeed

Properties

NumOfSamples, SJW, TSEG1, TSEG2

 BusSpeed

14-5

BusStatus
Determine status of bus

Description
The BusStatus property displays information about the state of the CAN bus or the J1939 bus.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Character vector

Values
• N/A — Property not supported by vendor.
• ErrorActive — Node transmits Active Error Flags when it detects errors.
• ErrorPassive — Node transmits Passive Error Flags when it detects errors.
• BusOff — Node will not transmit anything on the bus.

See Also
Functions

canChannel, j1939Channel

14 Properties

14-6

Data
CAN message or J1939 parameter group data

Description
Use the Data property to define your message data in a CAN message or parameter group data in a
J1939 parameter group.

Characteristics
Usage CAN message, J1939 parameter group
Read only Never
Data type Numeric

Values
The data value is a uint8 array, based on the data length you specify in the message.

Examples
Specify CAN Message Data

Create a CAN message and load data into a message.

message = canMessage(2500, true, 4)
message.Data = [23 43 23 43 54 34 123 1]

If you are using a CAN database for your message definitions, change values of the specific signals in
the message directly.

You can also use the pack function to load data into your message.

Specify J1939 Parameter Group Data

Create a parameter group and specify data.

pg = j1939ParameterGroup(db, 'PackedData')
pg.Data(1:2) = [50 0]

See Also
Functions

canMessage, pack

 Data

14-7

Database
Store CAN database information

Description
The Database property stores information about an attached CAN database.

Characteristics
Usage CAN channel, CAN message
Read only For a CAN message property
Data type Database handle

Values
This property displays the database information that your CAN channel or CAN message is attached
to. This property displays an empty structure, [], if your channel message is not attached to a
database. You can edit the CAN channel property, Database, but cannot edit the CAN message
property.

Examples
To see information about the database attached to your CAN message, type:

message.Database

To set the database information on your CAN channel to C:\Database.dbc, type:

channel.Database = canDatabase('C:\Database.dbc')

Tip CAN database file names containing non-alphanumeric characters such as equal signs and
ampersands are incompatible with Vehicle Network Toolbox. You can use a period sign in your
database name. Rename any CAN database files with non-alphanumeric characters before you use
them.

See Also
Functions

attachDatabase, canChannel, canDatabase, canMessage

14 Properties

14-8

DestinationAddress
Address of parameter group destination

Description
Address of the J1939 parameter group destination. DestinationAddress identifies the parameter
group source on the J1939 network. The source uses the specified destination address to send
parameter groups.

Characteristics
Usage J1939 parameter group
Read only Never
Data type Numeric

Values
Specify DestinationAddress of the parameter group as a number from 0 through 253. 254 is a
null value and is used by your application to detect available addresses on the J1939 network. To send
a parameter group to all devices on the network, use 255, which is the global value.

See Also
Functions

j1939ParameterGroup

 DestinationAddress

14-9

Device
Display channel device type

Description
For National Instruments devices, the Device property displays the device number on the hardware.

For all other devices, the Device property displays information about the device type to which the
CAN or J1939 channel is connected.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Character vector

Values
Values are automatically defined when you configure the channel with the canChannel or the
j1939Channel function.

See Also
Functions
canChannel | canChannelList | j1939Channel

Properties
DeviceChannelIndex | DeviceSerialNumber | DeviceVendor

14 Properties

14-10

Device(NI)
Display NI CAN channel device type

Description
For National Instruments devices, the DeviceType property displays information about the device
type to which the CAN channel is connected.

Characteristics
Usage CAN channel
Read only Always
Data type Character vector

Values
Values are automatically defined when you configure the channel with the canChannel function.

See Also
Functions
canChannel | canChannelList

Properties
DeviceChannelIndex | DeviceVendor

 Device(NI)

14-11

DeviceChannelIndex
Display device channel index

Description
The DeviceChannelIndex property displays the channel index on which the selected CAN or J1939
channel is configured.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Numeric

Values
Values are automatically defined when you configure the channel with the canChannel function.

See Also
Functions
canChannel | canChannelList | j1939Channel

Properties
Device | DeviceVendor

14 Properties

14-12

DeviceSerialNumber
Display device serial number

Description
The DeviceSerialNumber property displays the serial number of the device connected to the CAN
or J1939 channel.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type • Numeric

• Hexadecimal character vector (NI CAN devices only)

Values
Values are automatically defined when you configure the channel with the canChannel function.

See Also
Functions
canChannel | canChannelList | j1939Channel

Properties
Device | DeviceVendor

 DeviceSerialNumber

14-13

DeviceVendor
Display device vendor name

Description
The DeviceVendor property displays the name of the device vendor.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Character vector

Values
Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.

See Also
Functions
canChannel | canChannelList | j1939Channel

Properties
Device | DeviceChannelIndex | DeviceSerialNumber

14 Properties

14-14

Error
CAN message error frame

Description
The Error property is a read-only value that identifies the specified CAN message as an error frame.
The channel sets this property to true when it receives a CAN message as an error frame.

Characteristics
Usage CAN message
Read only Always
Data type Boolean

Values
• false — The message is not an error frame.
• true — The message is an error frame.

The Error property displays false, unless the message is an error frame.

See Also
Functions

canMessage

 Error

14-15

Extended
Identifier type for CAN message

Description
The Extended property is the identifier type for a CAN message. It can either be a standard
identifier or an extended identifier.

Characteristics
Usage CAN message
Read only Always
Data type Boolean

Values
• false — The identifier type is standard (11 bits).
• true — The identifier type is extended (29 bits).

Examples
To set the message identifier type to extended with the ID set to 2350 and the data length to eight
bytes, type:

message = canMessage(2350, true, 8)

You cannot edit this property after the initial configuration.

See Also
Functions

canMessage

Properties

ID

14 Properties

14-16

FilterBlockList
List of parameter groups to block

Description
FilterBlockList displays a list of parameter group names and numbers blocked by the channel.

Characteristics
Usage J1939 channel
Read only Always
Data type Character vector, Cell array

Values
The list displays parameter group names and numbers as character vectors or cell arrays of character
vectors and numbers. To change the values, use one of the filtering functions.

See Also
Functions

j1939Channel, filterAllowOnly, filterAllowAll, filterBlockAll

Properties

FilterPassList

 FilterBlockList

14-17

FilterPassList
List of parameter groups to pass

Description
FilterPassList displays a list of parameter group names and numbers that the channel can pass
to the network.

Characteristics
Usage J1939 channel
Read only Always
Data type Character vector, Cell array

Values
The list displays parameter group names and numbers as character vectors or cell arrays of character
vectors and numbers. To change the values, use one of the filtering functions.

See Also
Functions

j1939Channel, filterAllowOnly, filterAllowAll, filterBlockAll

Properties

FilterBlockList

14 Properties

14-18

ID
Identifier for CAN message

Description
The ID property represents a numeric identifier for a CAN message.

Characteristics
Usage CAN message
Read only Always
Data type Numeric

Values
The ID value must be a positive integer from:

• 0 through 2047 for a standard identifier
• 0 through 536,870,911 for an extended identifier

You can also specify a hexadecimal value using the hex2dec function.

Examples
To configure a message ID to a standard identifier of value 300 and a data length of eight bytes, type:

message = canMessage(300, false, 8)

See Also
Functions

canMessage

Properties

Extended

 ID

14-19

InitialTimestamp
Indicate when channel started

Description
The InitialTimestamp property indicates when the channel was set online with the start
function or when its start trigger was received. For National Instruments devices, the time is
obtained from the device driver; for devices from other vendors the time is obtained from the
operating system where MATLAB is running.

Characteristics
Usage CAN channel
Read only Always
Data type Datetime

Examples
canch = canChannel('Vector','CANCaseXL 1',1)
start(canch);

StrtTime = canch.InitialTimestamp

See Also
Functions
canChannel | start

Properties
StartTriggerTerminal

Introduced in R2016a

14 Properties

14-20

InitializationAccess
Determine control of device channel

Description
The InitializationAccess property determines if the configured CAN or J1939 channel object
has full control of the device channel. You can change some property values of the hardware channel
only if the object has full control over the hardware channel.

Note Only the first channel created on a device is granted initialization access.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Boolean

Values
• Yes — Has full control of the hardware channel and can change the property values.
• No — Does not have full control and cannot change property values.

See Also
Functions

canChannel

 InitializationAccess

14-21

MessageInfo
Information on CAN database messages

Description
The MessageInfo property is a structure with information about all messages defined in the
specified CAN database.

Characteristics
Usage CAN database
Read only Always
Data type Structure

Values
The MessageInfo property is a read-only structure. Use indexing to access the information of each
message.

Examples
Display Database Message Information

db = canDatabase('J1939DB.dbc');
db.MessageInfo

3×1 struct array with fields:
 Name
 Comment
 ID
 Extended
 J1939
 Length
 Signals
 SignalInfo
 TxNodes
 Attributes
 AttributeInfo

db.MessageInfo(1).Name

A1

db.MessageInfo(1).Signals

 'EngBlowerBypassValvePos'
 'EngGasSupplyPress'

14 Properties

14-22

See Also
Functions
canDatabase | messageInfo | signalInfo | valueTableText

Properties
Messages | SignalInfo | Signals

 MessageInfo

14-23

MessageReceivedFcn
Specify function to run

Description
Configure MessageReceivedFcn as a callback function to run a character vector expression, a
function handle, or a cell array when a specified number of messages are available.

The MessageReceivedFcnCount property defines the number of messages available before the
configured MessageReceivedFcn runs.

Characteristics
Usage CAN channel
Read only Never
Data type Callback function

Values
The default value is an empty character vector. You can specify the name of a callback function that
you want to run when the specified number of messages are available.

Examples

Specify Callback

Specify the callback function to execute.

canch.MessageReceivedFcn = @Myfunction;

See Also
Functions
canChannel

Properties
MessageReceivedFcnCount | MessagesAvailable

Topics
“CAN Message Reception Callback Functions”

14 Properties

14-24

MessageReceivedFcnCount
Specify number of messages available before function is triggered

Description
Configure MessageReceivedFcnCount to the number of messages that must be available before a
MessageReceivedFcn is triggered.

Characteristics
Usage CAN channel
Read only While channel is online
Data type Double

Values
The default value is 1. You can specify a positive integer for your MessageReceivedFcnCount.

Examples

Specify Message Count

Specify the message count to trigger a callback.

canch.MessageReceivedFcnCount = 55;

See Also
Functions
canChannel

Properties
MessageReceivedFcn | MessagesAvailable

Topics
“CAN Message Reception Callback Functions”

 MessageReceivedFcnCount

14-25

Messages
Message names from CAN database

Description
The Messages property stores the names of all messages defined in the specified CAN database.

Characteristics
Usage CAN database
Read only Always
Data type Cell array of character vectors

Values
The Messages property displays a cell array of character vectors. You cannot edit this property.

Examples
Display database message information

db = canDatabase('J1939DB.dbc');
db.Messages

 'A1'
 'A1DEFI'
 'A1DEFSI'

db.Messages{1}

A1

See Also
Functions
canDatabase | messageInfo | signalInfo | valueTableText

Properties
MessageInfo | SignalInfo | Signals

14 Properties

14-26

MessagesAvailable
Display number of messages available to be received by CAN channel

Description
The MessagesAvailable property displays the total number of messages available to be received by
a CAN channel.

Characteristics
Usage CAN channel
Read only Always
Data type Double

Values
The value is 0 when no messages are available.

See Also
Functions

canChannel

Properties

MessagesReceived, MessagesTransmitted

 MessagesAvailable

14-27

MessagesReceived
Display number of messages received by CAN channel

Description
The MessagesReceived property displays the total number of messages received since the channel
was last started.

Characteristics
Usage CAN channel
Read only Always
Data type Double

Values
The value is 0 when no messages have been received. This number increments based on the number
of messages the channel receives.

See Also
Functions
canChannel | canChannelList

Properties
MessagesAvailable | MessagesTransmitted

14 Properties

14-28

MessagesTransmitted
Display number of messages transmitted by CAN channel

Description
The MessagesTransmitted property displays the total number of messages transmitted since the
channel was last started.

Characteristics
Usage CAN channel
Read only Always
Data type Double

Values
The default is 0 when no messages have been sent. This number increments based on the number of
messages the channel transmits.

See Also
Functions

canChannel

Properties

MessagesAvailable, MessagesReceived

 MessagesTransmitted

14-29

Name (Database)
CAN database name

Description
The Name (Database) property displays the name of the database.

Characteristics
Usage CAN database
Read only Always
Data type Character vector

Values
Name is a character vector value. This value is acquired from the name of the database file. You
cannot edit this property.

See Also
Functions

canDatabase

Properties

Extended, ID

14 Properties

14-30

Name (CAN)
CAN message name

Description
The Name (Message) property displays the name of the message.

Characteristics
Usage CAN message
Read only Always
Data type Character vector

Values
Name is a character vector value. This value is acquired from the name of the message you defined in
the database. You cannot edit this property if you are defining raw messages.

See Also
Functions

canMessage

Properties

Extended, ID

 Name (CAN)

14-31

Name (J1939)
J1939 parameter group name

Description
The Name property displays the name of the J1939 parameter group.

Characteristics
Usage J1939 parameter group
Read only Never
Data type Character vector

Values
Name is a character vector value. This value is acquired from the name you define when you create
the parameter group.

See Also
Functions

j1939ParameterGroup

14 Properties

14-32

NodeInfo
Information on CAN database nodes

Description
The NodeInfo property is a structure with information about all nodes defined in the specified CAN
database.

Characteristics
Usage CAN database
Read only Always
Data type Structure

Values
The NodeInfo property is a read-only structure. Use indexing to access the information of each node.

Examples
Display Database Node Information

db = canDatabase('J1939DB.dbc');
db.NodeInfo

3×1 struct array with fields:
 Name
 Comment
 Attributes
 AttributeInfo

db.NodeInfo(1).Name

AerodynamicControl

See Also
Functions
canDatabase | nodeInfo

Properties
Nodes

 NodeInfo

14-33

Nodes
Node names from CAN database

Description
The Nodes property stores the names of all nodes defined in the specified CAN database.

Characteristics
Usage CAN database
Read only Always
Data type Cell array of character vectors

Values
The Nodes property displays a cell array of character vectors. You cannot edit this property.

Examples
Display Database Attributes

db = canDatabase('J1939DB.dbc');
db.Nodes

 'AerodynamicControl'
 'Aftertreatment_1_GasIntake'
 'Aftertreatment_1_GasOutlet'

db.Nodes{1}

AerodynamicControl

See Also
Functions
canDatabase | nodeInfo

Properties
NodeInfo

14 Properties

14-34

NumOfSamples
Display number of samples available to channel

Description
The NumOfSamples property displays the total number of samples available to this channel. If you do
not specify a value, the BusSpeed property determines the default value.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Double

Values
The value is a positive integer based on the driver settings for the channel.

See Also
Functions

canChannel, j1939ChannelconfigBusSpeed

Properties

BusSpeed, SJW, TSEG1, TSEG2

 NumOfSamples

14-35

OnboardTermination
Configure bus termination on device

Description
The OnboardTermination property specifies the device to use its onboard termination of the CAN
bus. For more information on the behavior and characteristics of a specific device, refer to its
vendor’s documentation.

Characteristics
Usage NI-XNET CAN channel
Read only When online
Data type Logical

Examples
canch = canChannel('NI','CAN1');
canch.OnboardTermination = true

See Also
Functions

canChannel

Introduced in R2016a

14 Properties

14-36

ParameterGroupsAvailable
Number of parameter groups available

Description
ParameterGroupsAvailable displays the total number of parameter groups available to the
channel.

Characteristics
Usage J1939 channel
Read only Always
Data type Double

Values
The property displays the number of available parameters to the channel.

See Also
Functions

j1939Channel

Properties

ParameterGroupsReceived, ParameterGroupsTransmitted

 ParameterGroupsAvailable

14-37

ParameterGroupsReceived
Number of parameter groups received

Description
ParameterGroupsTransmitted displays the total number of parameter groups transmitted since
the channel was started.

Characteristics
Usage J1939 channel
Read only Always
Data type Double

Values
The property displays the number of received parameters through the channel.

See Also
Functions

j1939Channel

Properties

ParameterGroupsTransmitted, ParameterGroupsAvailable

14 Properties

14-38

ParameterGroupsTransmitted
Number of parameter groups transmitted

Description
ParameterGroupsTransmitted displays the total number of parameter groups transmitted since
the channel was started.

Characteristics
Usage J1939 channel
Read only Always
Data type Double

Values
The property displays the number of transmitted parameter through the channel.

See Also
Functions

j1939Channel

Properties

ParameterGroupsReceived, ParameterGroupsAvailable

 ParameterGroupsTransmitted

14-39

Path
CAN database folder path

Description
The Path property displays the path to the CAN database.

Characteristics
Usage CAN database
Read only Always
Data type Character vector

Values
The path name is a character vector value, pointing to the CAN database in your folder structure.

See Also
Functions

canDatabase

14 Properties

14-40

PDUFormatType
J1939 parameter group PDU format

Description
The PDUFormatType property displays the J1939 protocol data unit format of the parameter group.

Characteristics
Usage J1939 parameter group
Read only Always
Data type Character vector

Values
PDUFormatType is displayed as a character vector. This value is automatically assigned when you
create the parameter group.

See Also
Functions

j1939ParameterGroup

 PDUFormatType

14-41

PGN
J1939 parameter group number

Description
The PGN property displays the number of the parameter group.

Characteristics
Usage J1939 parameter group
Read only Never
Data type Number

Values
PGN is represented as a number. This value is automatically assigned when you create the parameter
group.

See Also
Functions

j1939ParameterGroup

14 Properties

14-42

Priority
Priority of parameter group

Description
The Priority property specifies the precedence of the parameter group on the J1939 network.

Values
Priority takes a numeric value of 0 to 7, which specifies the order of importance of the parameter
group.

See Also
Functions

j1939ParameterGroup

Characteristics
Usage J1939 parameter group
Read only Never
Data type Numeric

 Priority

14-43

ReceiveErrorCount
Display number of received errors detected by channel

Description
The ReceiveErrorCount property displays the total number of errors detected by this channel
during receive operations.

Characteristics
Usage CAN channel
Read only Always
Data type Double

Values
The value is 0 when no error messages have been received.

See Also
Functions

canChannel, receive

Properties

TransmitErrorCount

14 Properties

14-44

Remote
Specify CAN message remote frame

Description
Use the Remote property to specify the CAN message as a remote frame.

Characteristics
Usage CAN message
Read only Never
Data type Boolean

Values
• {false} — The message is not a remote frame.
• true — The message is a remote frame.

Examples
To change the default value of Remote and make the message a remote frame, type:

message.Remote = true

See Also
Functions

canMessage

 Remote

14-45

Running
Determine status of channel

Description
The Running property displays information about the state of the CAN or J1939 channel.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Boolean

Values
• {false} — The channel is offline.
• true — The channel is online.

Use the start function to set your channel online.

See Also
Functions

canChannel, j1939Channel, start

14 Properties

14-46

SilentMode
Specify if channel is active or silent

Description
Specify whether the channel operates silently. By default SilentMode is false. In this mode, the
channel both transmits and receives messages normally and performs other tasks on the network
such as acknowledging messages and creating error frames.

To observe all message activity on the network and perform analysis without affecting the network
state or behavior, change SilentMode to true. In this mode, you can only receive messages and not
transmit any.

Characteristics
Usage CAN channel, J1939 CAN channel
Read only Never
Data type Boolean

Values
• {false} — The channel is in normal or active mode.
• true — The channel is in silent mode.

Examples
To configure the channel to silent mode, type:

canch.SilentMode = true

To configure the channel to normal mode, type:

canch.SilentMode = false

See Also
Functions

canChannelj1939Channel

 SilentMode

14-47

SignalInfo
Information on CAN database message signals

Description
The SignalInfo property is a structure with information about all signals defined in the specified
CAN database message.

Characteristics
Usage CAN database
Read only Always
Data type Structure

Values
The SignalInfo property is a read-only structure. Use indexing to access the information of each
signal.

Examples
Display Database Signal Information

db = canDatabase('J1939DB.dbc');
db.MessageInfo

3×1 struct array with fields:
 Name
 Comment
 ID
 Extended
 J1939
 Length
 Signals
 SignalInfo
 TxNodes
 Attributes
 AttributeInfo

s = db.MessageInfo(1).SignalInfo

2×1 struct array with fields:
 Name
 Comment
 StartBit
 SignalSize
 ByteOrder
 Signed
 ValueType
 Class

14 Properties

14-48

 Factor
 Offset
 Minimum
 Maximum
 Units
 ValueTable
 Multiplexor
 Multiplexed
 MultiplexMode
 RxNodes
 Attributes
 AttributeInfo

s(2).Name

EngGasSupplyPress

See Also
Functions
canDatabase | messageInfo | signalInfo

Properties
MessageInfo | Messages | Signals

 SignalInfo

14-49

Signals
Physical signals defined in CAN message or J1939 parameter group

Description
The Signals property allows you to view and edit signal values defined for a CAN message or a
J1939 parameter group. This property displays an empty structure if the message has no defined
signals or a database is not attached to the message or parameter group. The input values for this
property depends on the signal type.

Characteristics
Usage CAN message, J1939 parameter group
Read only Sometimes
Data type Structure

Examples
Display CAN Message Signals

Create a CAN message.

message = canMessage(canDb,'messageName');

Display message signals.

message.Signals

 VehicleSpeed: 0
 EngineRPM: 250

Change the value of a signal.

message.Signals.EngineRPM = 300

Display J1939 Parameter Group Signals

Create a parameter group.

pg = j1939ParameterGroup(db, 'PackedData')

Display parameter group signals

pg.Signals

 ToggleSwitch: -1
 SliderSwitch: -1
 RockerSwitch: -1
 RepeatingStairs: 255
 PushButton: 1

Change the value of the repeating stairs.

14 Properties

14-50

pg.Signals.RepeatingStairs = 200

 ToggleSwitch: -1
 SliderSwitch: -1
 RockerSwitch: -1
 RepeatingStairs: 200
 PushButton: 1

See Also
Functions
canDatabase | canMessage | j1939ParameterGroup | messageInfo | signalInfo

Properties
MessageInfo | Messages | SignalInfo

 Signals

14-51

SJW
Synchronization jump width (SJW) of bit time segment

Description
SJW displays the synchronization jump width of the bit time segment. To adjust the on-chip bus clock,
the controller may shorten or prolong the length of a bit by an integral number of time segments. The
maximum value of these bit time adjustments are termed the synchronization jump width or SJW.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Numeric

Values
The value of the SJW is determined by the specified bus speed.

See Also
Functions

canChannel, j1939Channel, configBusSpeed

Properties

BusSpeed, NumOfSamples, TSEG1, TSEG2

14 Properties

14-52

SourceAddress
Address of parameter group source

Description
Address of the J1939 parameter group source. SourceAddress identifies the parameter group
source on the J1939 network. This allows the destinations to identify the sender and respond
appropriately.

Characteristics
Usage J1939 parameter group
Read only Never
Data type Numeric

Values
Specify SourceAddress of the parameter group as a number between 0 and 253. 254 is a null value
and is used by your application to detect available addresses on the J1939 network. To send a
parameter group to all devices on the network, use 255, which is the global value.

See Also
Functions

j1939ParameterGroup

 SourceAddress

14-53

StartTriggerTerminal
Specify start trigger source terminal

Description
The StartTriggerTerminal property specifies a synchronization trigger connection to start the NI-
XNET channel on the connected source terminal.

To configure an NI-XNET CAN module (such as NI 9862) to start acquisition on an external signal
triggering event provided at an external chassis terminal, set the CAN channel
StartTriggerTerminal property to the appropriate terminal name. Form the property value
character vector by combining the chassis name from the NI MAX utility and the trigger terminal
name; for example, '/cDAQ3/PFI0'.

Note This property can be configured only once. After it is assigned, the property is read-only and
cannot be changed. The only way to set a different value is to clear the channel object, recreate the
channel with canChannel, and configure its properties.

Characteristics
Usage NI-XNET CAN channel
Read only After assigned
Data type Character vector

Examples
Configure a NI-XNET CAN module start trigger on terminal /cDAQ3/PFI0.

ch1 = canChannel('NI','CAN1')
ch1.StartTriggerTerminal = '/cDAQ3/PFI0'
start(ch1) % Acquisition begins on hardware trigger

With a hardware triggering configuration, the InitialTimestamp value represents the absolute
time the CAN channel acquisition was triggered. The Timestamp of the received CAN messages is
relative to the trigger moment.

ch1.InitialTimestamp
messages = receive(ch1,Inf);
messages(1).Timestamp

See Also
Functions
canChannel

Properties
InitialTimestamp

14 Properties

14-54

Introduced in R2016a

 StartTriggerTerminal

14-55

Timestamp (CAN)
Display message received timestamp

Description
The Timestamp property displays the time at which the message was received on a CAN channel.
This time is based on the receiving channel's start time.

Characteristics
Usage CAN message
Read only Never
Data type Double

Values
Timestamp displays a numeric value indicating the time the message was received, based on the
start time of the CAN channel

Examples
To set the time stamp of a message to 12, type:

message.Timestamp = 12

See Also
Functions

canChannel, canMessage, receive, replay

14 Properties

14-56

Timestamp (J1939)
Display parameter received timestamp

Description
The Timestamp property displays the time at which the parameter group was received on a J1939
channel. This time is based on the hardware log.

Characteristics
Usage J1939 parameter group
Read only Never
Data type Double

Values
Timestamp displays a numeric value indicating the time the parameter group was received, based on
the logged time on the hardware.

See Also
Functions

j1939ParameterGroup

 Timestamp (J1939)

14-57

TransceiverName
Name of device transceiver

Description
TransceiverName displays the name of the device transceiver. The device transceiver translates the
digital bit stream going to and coming from the bus into the real electrical signals present on the bus.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Character vector

Values
Values are automatically defined when you configure the channel with the canChannel or the
j1939Channel function.

See Also
Functions

canChannel, j1939Channel

Properties

TransceiverState

14 Properties

14-58

TransceiverState
Display state or mode of transceiver

Description
If your CAN or J1939 transceiver allows you to control its mode, you can use the TransceiverState
property to set the mode.

Characteristics
Usage CAN channel, J1939 CAN channel
Read only Never
Data type Numeric

Values
The values are defined by the transceiver manufacturer. Refer to your CAN transceiver
documentation for the appropriate transceiver modes. Possible modes representing the numeric value
specified are:

• high speed
• high voltage
• sleep
• wake up

See Also
Functions

canChannel

Properties

TransceiverName

 TransceiverState

14-59

TransmitErrorCount
Display number of transmitted errors by channel

Description
The TransmitErrorCount property displays the total number of errors detected by this channel
during transmit operations.

Characteristics
Usage CAN channel
Read only Always
Data type Double

Values
The value is 0 when no error messages have been transmitted.

See Also
Functions

canChannel, transmit

Properties

ReceiveErrorCount

14 Properties

14-60

TSEG1
Display amount that channel can lengthen sample time

Description
The TSEG1 property displays the amount in bit time segments that the channel can lengthen the
sample time to compensate for delay times in the network.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Double

Values
The value is inherited when you configure the bus speed of your CAN channel.

See Also
Functions

canChannel, j1939Channel, configBusSpeed

Properties

BusSpeed, NumOfSamples, SJW, TSEG2

 TSEG1

14-61

TSEG2
Display amount that channel can shorten sample time

Description
The TSEG2 property displays the number of bit time segments the channel can shorten the sample to
resynchronize.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Characteristics
Usage CAN channel, J1939 channel
Read only Always
Data type Double

Values
The value is inherited when you configure the bus speed of your CAN channel.

See Also
Functions

canChannel, j1939Channel, configBusSpeed

Properties

BusSpeed, NumOfSamples, SJW, TSEG1

14 Properties

14-62

UserData
Enter custom data

Description
Enter custom data to be stored in your CAN message or a J1939 parameter group, channel, or
database object using the UserData property. When you save an object with UserData specified, you
automatically save the custom data. When you load an object with UserData specified, you
automatically load the custom data.

Note To avoid unexpected results when you save and load an object with UserData, specify your
custom data in simple data types and constructs.

Characteristics
Usage CAN channel, J1939 channel, CAN message, J1939 parameter group, CAN

database
Read only Never
Data type User defined

See Also
Functions

canChannel, canMessage, canDatabase, j1939ParameterGroup, j1939Channel

 UserData

14-63

Events
Display A2L events list

Description
The Events property displays events available in the selected A2L description file. This property
contains a cell array of character vectors that correspond to the names of events in the A2L file. To
use the A2L file events, see “Access Event Information” on page 7-3.

14 Properties

14-64

Measurements
Display A2L measurements list

Description
The Measurements property displays measurements available in the selected A2L description file.
This property contains a cell array of character vectors that correspond to the names of
measurements in the A2L file. To use the A2L file measurements see “Access Measurement
Information” on page 7-2.

 Measurements

14-65

DAQInfo
Data acquisition information in A2L file

Description
The DAQInfo property displays data acquisition information in the A2L description file. This property
contains a structure with values corresponding to the DAQ features in the slave.

14 Properties

14-66

SlaveName
Name of connected slave

Description
The SlaveName property displays the name of the slave node as specified in the A2L file. The name is
specified as a character vector.

 SlaveName

14-67

FileName
Name of referenced A2L file

Description
The FileName property displays the name of the referenced A2L file as a character vector.

14 Properties

14-68

FilePath
Path of A2L file

Description
The FileName property displays the full file path to the A2L file as a character vector.

 FilePath

14-69

ProtocolLayerInfo
Protocol layer information

Description
The ProtocolLayerInfo property displays a structure containing general information about the
XCP protocol implementation of the slave as defined in the A2L file.

14 Properties

14-70

TransportLayerCANInfo
CAN transport layer information

Description
The TransportLayerCANInfo property displays a structure containing general information about
the CAN transport layer for the XCP connection to the slave as defined in the A2L file.

 TransportLayerCANInfo

14-71

A2LFileName
Name of the A2L file

Description
The A2LFileName property displays the name of the A2L file contains information about the slave
that an XCP channel can access.

14 Properties

14-72

SeedKeyDLL
Name of seed and key security access dll

Description
The SeedKeyDLL property displays the name of the dll file that contains the seed and key security
algorithm used to unlock an XCP slave module.

 SeedKeyDLL

14-73

TransportLayer
Transport layer type

Description
The TransportLayer property displays the type of transport layer used in the XCP connection.

14 Properties

14-74

TransportLayerDevice
XCP transport layer connection

Description
The TransportLayerDevice property contains a structure with XCP transport layer connection
details, including information about the device through which the channel communicates with the
slave.

 TransportLayerDevice

14-75

Blocks

15

CAN Configuration
Configure parameters for specified CAN device

Library
Vehicle Network Toolbox: CAN Communication

Description
The CAN Configuration block configures parameters for a CAN device that you can use to transmit
and receive messages.

Specify the configuration of your CAN device before you configure other CAN blocks.

Use one CAN Configuration block to configure each device that sends and receives messages in your
model. If you use a CAN Receive or a CAN Transmit block to receive and send messages on a device,
your model requires a corresponding CAN Configuration block for the specified device.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The CAN Configuration block supports the use of Simulink Accelerator™ and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models.

For more information on this feature, see the Simulink documentation.

The CAN Configuration block supports the use of code generation when you use it with the CAN
Receive and CAN Transmit blocks.

Parameters
Device

Select the CAN device and a channel on the device that you want to use from the list. Use this
device to transmit and/or receive messages. The device driver determines the default bus speed.

Bus speed
Set the BusSpeed property for the selected device, in bits per second. The default bus speed is
the default assigned by the selected device.

15 Blocks

15-2

Enable bit parameters manually

Note This option is enabled only for supporting vendors.

Select this check box to specify bit parameter settings manually. The bit parameter settings
include:

Synchronization jump width, Time segment 1, Time segment 2, and Number of samples.
If you do not select this option, the device automatically assigns the bit parameters depending on
the bus speed setting.

Tip Use the default bit parameter settings unless you have specific timing requirements for your
CAN connection.

Synchronization jump width
Specify the maximum value of the bit time adjustments. The specified value must be a positive
integer. If you do not specify a value, the selected bus speed setting determine the default value.
To change this value, select the Enable bit parameters manually check box first. Refer to the
SJW property for more information.

Time segment 1
Specify the amount of bit time segments that the channel can lengthen the sample time. The
specified value must be a positive integer. If you do not specify a value, the selected bus speed
setting determines the default value. To change this value, select the Enable bit parameters
manually check box first. Refer to the TSEG1 property for more information.

Time segment 2
Specify the amount of bit time segments that the channel can shorten the sample time to
resynchronize. The specified value must be a positive integer. If you do not specify a value, the
selected bus speed setting determines the default value. To change this value, select the Enable
bit parameters manually check box first. Refer to the TSEG2 property for more information.

Number of samples
Specify the total number of samples available to this channel. The specified value must be a
positive integer. If you do not specify a value, the selected bus speed setting determines the
default value. To change this value, select the Enable bit parameters manually check box first.
Refer to the NumOfSamples property for more information.

Verify bit parameter settings validity
If you have set the bit parameter settings manually, click this button to see if your settings are
valid. The block then runs a check to see if the combination of your bus speed setting and the bit
parameter value forms a valid value for the CAN device. If the new bit parameter values do not
form a valid combination, the verification fails and displays an error message.

Acknowledge mode
Specify whether the channel is in Normal or Silent mode. By default Acknowledge mode is
Normal. In this mode, the channel both receives and transmits messages normally and performs
other tasks on the network such as acknowledging messages and creating error frames. To
observe all message activity on the network and perform analysis, without affecting the network
state or behavior, select Silent. In Silent mode, you can only receive messages and not transmit.

 CAN Configuration

15-3

Notes

• You cannot specify the mode if you are using NI virtual channels.
• Use Silent mode only if you want to observe and analyze your network activity.

See Also
Blocks
CAN Receive | CAN Transmit

Introduced in R2009a

15 Blocks

15-4

CAN FD Configuration
Configure parameters for specified CAN FD device

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Configuration block configures parameters for a CAN FD device that you can use to
transmit and receive messages.

Specify the configuration of your CAN FD device before you configure other CAN FD blocks.

Use one CAN FD Configuration block to configure each device that sends and receives messages in
your model. If you use a CAN FD Receive or a CAN FD Transmit block to receive and send messages
on a device, your model checks to see if there is a corresponding CAN FD Configuration block for the
specified device.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The CAN FD Configuration block supports the use of Simulink Accelerator mode. Using this feature,
you can speed up the execution of Simulink models. For more information, see “Acceleration”
(Simulink).

The CAN FD Configuration block supports the use of code generation when you use it with the CAN
FD Receive and CAN FD Transmit blocks.

Parameters
Device

Select the CAN FD device and a channel on the device that you want to use from the list. Use this
device to transmit and/or receive messages. The device driver determines the default bus speed.

Arbitration Bus speed
Set arbitration bus speed for the selected device, in bits per second. The default speed is
assigned by the selected device.

 CAN FD Configuration

15-5

Data Bus speed
Set data bus speed for the selected device, in bits per second. The default speed is assigned by
the selected device.

Bus frequency
(PEAK-System only.) Set the bus frequency, in megahertz.

Arbitration/Data bit rate prescaler
(PEAK-System only.) Set separate prescaler values for arbitration and data bit rates.

For Vector and PEAK-System devices, the next three parameters are available in two sets for
manually setting bit parameters for data and arbitration bus speeds.

Synchronization jump width
Specify the maximum value of the bit time adjustments. The specified value must be a positive
integer. If you do not specify a value, the selected bus speed setting determine the default value.

Time segment 1
Specify the amount of bit time segments that the channel can lengthen the sample time. The
specified value must be a positive integer. If you do not specify a value, the selected bus speed
setting determines the default value.

Time segment 2
Specify the amount of bit time segments that the channel can shorten the sample time to
resynchronize. The specified value must be a positive integer. If you do not specify a value, the
selected bus speed setting determines the default value.

Verify bit parameter settings validity
If you have set the bit parameter settings separately, click this button to see if your settings are
valid. The block runs a check to see if the combination of your bus speed settings and the bit
parameter values form a valid value for the device. If the new bit parameter values do not form a
valid combination, the verification fails and displays an error message.

Acknowledge mode
Specify whether the channel is in Normal or Silent mode. By default Acknowledge mode is
Normal. In this mode, the channel both receives and transmits messages normally and performs
other tasks on the network such as acknowledging messages and creating error frames. To
observe all message activity on the network and perform analysis, without affecting the network
state or behavior, select Silent. In Silent mode, you can only receive messages and not transmit.

Notes

• You cannot specify the mode if you are using NI virtual channels.
• Use Silent mode only if you want to observe and analyze your network activity.

See Also
Blocks
CAN FD Receive | CAN FD Transmit | CAN FD Unpack | CAN FD Pack

15 Blocks

15-6

Introduced in R2018a

 CAN FD Configuration

15-7

CAN FD Log
Log received CAN FD messages

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Log block logs CAN FD messages from the CAN network or messages sent to the blocks
input port to a .mat file. You can load the saved messages into MATLAB for further analysis or into
another Simulink model.

Configure your CAN FD Log block to log from the Simulink input port. For more information, see
“Log and Replay CAN Messages”.

The Log block appends the specified filename with the current date and time, creating unique log
files for repeated logging.

If you want to use messages logged using Simulink blocks in the MATLAB Command window, use
canFDMessage to convert messages to the correct format.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Note You cannot have more than one CAN FD Log block in a model using the same PEAK-System
device channel.

Other Supported Features

• The CAN FD Log block supports the use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models. For more information on this feature, see
“Acceleration” (Simulink).

• The CAN FD Log block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries. For more information, see “Code
Generation” on page 15-8.

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

15 Blocks

15-8

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder™, and Embedded Coder® software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip If you are logging from the network, you need to configure your CAN channel with a CAN FD
Configuration block.

File name
Type the name and path of the file to log CAN FD messages to, or click Browse to browse to a file
location.

The model appends the log file name with the current date and time in the YYYY-MMM-
DD_hhmmss format. You can also open the block mask and specify a unique name to differentiate
between your files for repeated logging.

Variable name
Type the variable saved in the MAT-file that holds the CAN FD message information.

Maximum number of messages to log
Specify the maximum number of messages this block can log from the selected device or port.
The specified value must be a positive integer. If you do not specify a value the block uses the
default value of 10,000 messages. The log file saves the most recent messages up to the
specified maximum number.

 CAN FD Log

15-9

Log messages from
Select the source of the messages logged by the block. Possible values are CAN FD Bus or Input
port. To log messages from the network, you must specify a device.

Device
Select the device on the CAN network that you want to log messages from. This filed is
unavailable if you select Input port for Log messages from option.

Sample time
Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the CAN FD
Log block runs during simulation. If the block is inside a triggered subsystem or to inherit sample
time, you can specify –1 as your sample time. You can also specify a MATLAB variable for sample
time. The default value is 0.01 (in seconds).

See Also
Blocks
CAN FD Replay

Functions
canFDMessage

Introduced in R2018b

15 Blocks

15-10

CAN FD Pack
Pack individual signals into message for CAN FD bus

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Pack block loads signal data into a message at specified intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

The CAN FD Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals you specify for the block. For example, if your block has four
signals, it has four block inputs.

This block has one output port, Msg. The CAN FD Pack block takes the specified input parameters
and packs the signals into a bus message.

The block outputs CAN FD messages as a Simulink bus signal. For more information on Simulink bus
objects, see “Composite Signals” (Simulink).

Other Supported Features

The CAN FD Pack block supports:

• The use of Simulink Accelerator mode. Using this feature, you can speed up the execution of
Simulink models. For more information, see “Acceleration” (Simulink).

• Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

Dialog Box
Use the Function Block Parameters dialog box to select your CAN FD Pack block parameters.

 CAN FD Pack

15-11

Parameters

Data is input as
Select your data signal:

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. All other signal parameter fields are unavailable. This option opens only one
input port on your block.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on
the number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block
inputs depends on the number of signals specified in the CANdb file for the selected message.

Note The block supports the following input signals data types: single, double, int8, int16, int32,
int64, uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the Data is input
as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list
This option is available if you specify that your data is input via a CANdb file in the Data is input
as field and you select a CANdb file in the CANdb file field. Select the message to display signal
details in the Signals table.

Message

Name
Specify a name for your CAN FD message. The default is Msg. This option is available if you
choose to input raw data or manually specify signals. This option in unavailable if you choose to
use signals from a CANdb file.

Protocol mode
Specify the message protocol mode as CAN FD or CAN.

Identifier type
Specify whether your message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to input raw data or manually specify signals. For
CANdb specified signals, the Identifier type inherits the type from the database.

15 Blocks

15-12

Identifier
Specify your message ID. This number must be a positive integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to input
raw data or manually specify signals.

Length (bytes)
Specify the length of your message. For CAN messages the value can be 0-8 bytes; for CAN FD
the value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified
signals for your data input, the CANdb file defines the length of your message. This option is
available if you choose to input raw data or manually specify signals.

Remote frame
(Disabled for CAN FD protocol mode.) Specify the CAN message as a remote frame.

Bit Rate Switch (BRS)
(Disabled for CAN protocol mode.) Enable bitrate switch.

Signals Table

This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel®). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, proceeding to the next
higher byte as you cross a byte boundary. For example, if you pack one byte of data in little-
endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN FD Pack

15-13

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest
Address

• BE: Where byte order is in big-endian format (Motorola®). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, proceeding to the next
lower byte as you cross a byte boundary. For example, if you pack one byte of data in big-
endian format, with the start bit at 20, the data bit table resembles this figure.

15 Blocks

15-14

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block packs the signals into the message at each timestep:

• Standard: The signal is packed at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following types and values.

 CAN FD Pack

15-15

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block packs Signal-B along with
Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block packs Signal-C along with
Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
pack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 15-16 to understand how physical
values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 15-16 to understand how physical
values are converted to raw values packed into a message.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Conversion Formula

The conversion formula is

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal, and raw_value is the packed signal
value.

See Also
Blocks
CAN FD Configuration | CAN FD Transmit | CAN FD Unpack

15 Blocks

15-16

Functions
canFDMessageBusType

Introduced in R2018a

 CAN FD Pack

15-17

CAN FD Receive
Receive CAN FD messages from specified CAN FD device

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Receive block receives messages from the CAN network and delivers them to the
Simulink model. It outputs one message or all messages at each timestep, depending on the block
parameters.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN FD Receive block has two output ports:

• The f() output port is a trigger to a Function-Call subsystem. If the block receives a new
message, it triggers a Function-Call from this port. You can then connect to a Function-Call
Subsystem to unpack and process a message.

• The Msg output port contains a CAN message received at that particular timestep. The block
outputs messages as a Simulink bus signal. For more information on Simulink bus objects, see
“Composite Signals” (Simulink).

The CAN FD Receive block stores CAN messages in a first-in, first-out (FIFO) buffer. The FIFO buffer
delivers the messages to your model in the queued order at every timestep.

Note You cannot have more than one CAN FD Receive block in a model using the same PEAK-System
device channel.

Other Supported Features

The CAN FD Receive block supports the use of Simulink Accelerator mode. Using this feature, you
can speed up the execution of Simulink models. For more information, see “Acceleration” (Simulink).

The CAN FD Receive block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries. For more information, see “Code
Generation” on page 15-19.

15 Blocks

15-18

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip Configure your CAN FD Configuration block before you configure the CAN FD Receive block
parameters.

Device
Select the CAN device and a channel on the device you want to receive CAN messages from. This
field lists all the devices installed on the system. It displays the vendor name, the device name,
and the channel ID. The default is the first available device on your system.

Standard IDs Filter
Select the filter on this block for standard IDs. Valid choices are:

• Allow all (default): Allows all standard IDs to pass the filter.
• Allow only: Allows only ID or range of IDs specified in the text field. You can specify a single

ID or an array of IDs. You can also specify disjointed IDs or arrays separated by a comma. For
example, to accept IDs from 400 through 500, and 600 through 650, enter [[400:500]

 CAN FD Receive

15-19

[600:650]]. Standard IDs must be positive integers from 0 to 2047. You can also specify
hexadecimal values with the hex2dec function.

• Block all: Blocks all standard IDs from passing the filter.

Extended IDs Filter
Select the filter on this block for extended IDs. Valid choices are:

• Allow all (default): Allows all extended IDs to pass the filter.
• Allow only: Allows only those IDs specified in the text field. You can specify a single ID or an

array of IDs. You can also specify disjointed IDs or arrays separated by a comma. For example,
to accept IDs from 3000 through 3500, and 3600 through 3620, enter [[3000:3500]
[3600:3620]]. Extended IDs must be positive integers from 0 to 536870911. You can also
specify hexadecimal values using the hex2dec function.

• Block all: Blocks all extended IDs from passing the filter.

Sample time
Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the CAN FD
Receive block runs during simulation. If the block is inside a triggered subsystem or to inherit
sample time, you can specify -1 as your sample time. You can also specify a MATLAB variable for
sample time. The default value is 0.01 (in seconds).

Number of messages received at each timestep
Select how many messages the block receives at each specified timestep. Valid choices are:

• all (default): The CAN FD Receive block delivers all available messages in the FIFO buffer to
the model during a specific timestep. The block generates one function call for each delivered
message. The output port always contains one CAN message at a time.

• 1: The CAN FD Receive block delivers one message per timestep from the FIFO buffer to the
model.

If the block does not receive any messages before the next timestep, it outputs the last received
message.

See Also
Blocks
CAN FD Configuration | CAN FD Transmit | CAN FD Unpack

Functions
canFDMessageBusType

Introduced in R2018a

15 Blocks

15-20

CAN FD Replay
Replay logged CAN FD messages

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Replay block replays logged messages from a .mat file to a CAN network or to Simulink
as a bus signal. For more information on Simulink bus objects, see “Composite Signals” (Simulink).
You need a CAN FD Configuration block to replay to the network.

To replay messages logged in the MATLAB Command window in your Simulink model, convert them
into a compatible format using vntslgate and save it to a separate file. For more information, see
“Log and Replay CAN Messages”.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Replay Timing

When you replay logged messages, Simulink uses the original timestamps on the messages. When you
replay to a network, the timestamps correlate to real time, and when you replay to the Simulink input
port it correlates to simulation time. If the timestamps in the messages are all 0, all messages are
replayed as soon as the simulation starts, because simulation time and real time will be ahead of the
timestamps in the replayed messages.

Other Supported Features

• The CAN FD Replay block supports the use of Simulink Accelerator mode. Using this feature, you
can speed up the execution of Simulink models. For more information on this feature, see
“Acceleration” (Simulink).

• The CAN FD Replay block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries. For more information, see “Code
Generation” on page 15-21.

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

 CAN FD Replay

15-21

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip Configure your CAN FD Configuration block before you configure the CAN FD Receive block
parameters.

File name
Specify the name and path of the file that contains logged CAN FD messages that you can replay.
You can click Browse to browse to a file location and select the file.

Variable name
Specify the variable saved in the MAT-file that holds the CAN FD message information.

Number of times to replay messages
Specify the number of times you want the message replayed in your model. You can specify any
positive integer, including Inf. Specifying Inf continuously replays messages until simulation
stops.

Replay messages to
Specify if the model is replaying messages to the CAN network or an output port. If replaying to
the CAN network, you must also specify a device. If replaying to the model through an output
port, the output is a Simulink bus signal.

15 Blocks

15-22

Device
Select the device on the CAN network to replay messages to. This filed is unavailable if you select
Input port for Replay message to option.

Sample time
Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the CAN FD
Replay block runs during simulation. If the block is inside a triggered subsystem or to inherit
sample time, you can specify –1 as your sample time. You can also specify a MATLAB variable for
sample time. The default value is 0.01 (in seconds).

See Also
Functions
canFDMessageBusType | canFDMessageReplayBlockStruct

Blocks
CAN FD Log

Introduced in R2018b

 CAN FD Replay

15-23

CAN FD Transmit
Transmit CAN FD message to selected CAN FD device

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Transmit block transmits messages to the CAN network using the specified CAN device.
The CAN FD Transmit block can transmit a single message or an array of messages during a given
timestep. To transmit an array of messages from a signal bus, use a Bus Creator or Vector
Concatenate, Matrix Concatenate block from the Simulink block library.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN FD Transmit block has one input port. This port accepts a CAN message packed using the
CAN FD Pack block. It has no output ports.

CAN is a peer-to-peer network, so when transmitting messages on a physical bus at least one other
node must be present to properly acknowledge the message. Without another node, the transmission
will fail as an error frame, and the device will continually retry to transmit.

Other Supported Features

The CAN FD Transmit block supports the use of Simulink Accelerator mode. Using this feature, you
can speed up the execution of Simulink models. For more information, see “Acceleration” (Simulink).

The CAN FD Transmit block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries. For more information, see Code
Generation on page 15-24.

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

15 Blocks

15-24

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip Configure your CAN FD Configuration block before you configure the CAN FD Transmit block
parameters.

Device
Select the CAN device and channel for transmitting CAN messages to the network. This list
shows all the devices installed on the system. It displays the vendor name, the device name, and
the channel ID. The default is the first available device on your system.

Note: When using PEAK-System devices, CAN FD Transmit blocks in multiple enabled subsystems
might skip some messages. If possible, replace the enabled subsystems with a different type of
conditional subsystem, such as an if-action, switch-case-action, or triggered subsystem; or
redesign your model so that all the CAN FD Transmit blocks are contained within a single
enabled subsystem.

Transmit Options: On data change
When event-based transmission is enabled, messages are transmitted only at those time steps
when a change in message data is detected. When the input data matches the most recent
transmission for a given message ID, the message is not re-transmitted.

Event and periodic transmission can both be enabled to work together simultaneously. If neither
is selected, the default behavior is to transmit the current input at each time step.

 CAN FD Transmit

15-25

Transmit Options: Periodic
Select this option to enable periodic transmission of the message on the configured channel at the
specified message period. The period references real time, regardless of the Simulink model time
step size (fundamental sample time) or block execution sample time. This is equivalent to the
MATLAB function transmitPeriodic.

The periodic transmission is a nonbuffered operation. Only the last CAN message or set of
messages present at the input of the CAN FD Transmit block is sent when the time period occurs.

Transmit Options: Message period (in seconds)
Specify a period in seconds. This value is used to transmit the message in the specified period. By
default this value is 1.000 seconds.

See Also
Blocks
CAN FD Configuration | CAN FD Receive | CAN FD Pack

Introduced in R2018a

15 Blocks

15-26

CAN FD Unpack
Unpack individual signals from CAN FD messages

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Unpack block unpacks a CAN FD message into signal data using the specified output
parameters at every timestep. Data is output as individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN FD Unpack block has one output port by default. The number of output ports is dynamic and
depends on the number of signals you specify for the block to output. For example, if your block has
four signals, it has four output ports.

Other Supported Features

The CAN FD Unpack block supports

• The use of Simulink Accelerator mode. Using this feature, you can speed up the execution of
Simulink models. For more information, see “Acceleration” (Simulink).

• Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

Dialog Box
Use the Function Block Parameters dialog box to select your message unpacking parameters.

Parameters

Data to be output as
Select your data signal:

 CAN FD Unpack

15-27

• raw data: Output data as a uint8 vector array. If you select this option, you only specify the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

• manually specified signals: Allows you to specify data signals. If you select this option, use
the Signals table to create your signals message manually.

The number of output ports on your block depends on the number of signals you specify. For
example, if you specify four signals, your block has four output ports.

• CANdb specified signals: Allows you to specify a CAN database file that contains data
signals. If you select this option, select a CANdb file.

The number of output ports on your block depends on the number of signals specified in the
CANdb file. For example, if the selected message in the CANdb file has four signals, your
block has four output ports.

Note For manually or CANdb specified signals, the default output signal data type is double. To
specify other types, use a Signal Specification block. This allows the block to support the following
output signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and
boolean. The block does not support fixed-point types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message section of the dialog box. The
signals specified in the CANdb file populate Signals table.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list
This option is available if you specify that your data is to be output as a CANdb file in the Data to
be output as list and you select a CANdb file in the CANdb file field. You can select the message
that you want to view. The Signals table then displays the details of the selected message.

Message

Name
Specify a name for your message. The default is Msg. This option is available if you choose to
output raw data or manually specify signals.

Protocol mode
Specify the message protocol mode as CAN FD or CAN.

Identifier type
Specify whether your message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to output raw data or manually specify signals.
For CANdb-specified signals, the Identifier type inherits the type from the database.

15 Blocks

15-28

Identifier
Specify your message ID. This number must be a integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify –1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your message. For CAN messages the value can be 0-8 bytes; for CAN FD
the value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified
signals for your output data, the CANdb file defines the length of your message. This option is
available if you choose to output raw data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, proceeding to the next
higher byte as you cross a byte boundary. For example, if you pack one byte of data in little-
endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN FD Unpack

15-29

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest
Address

• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, proceeding to the next
lower byte as you cross a byte boundary. For example, if you pack one byte of data in big-
endian format, with the start bit at 20, the data bit table resembles this figure.

15 Blocks

15-30

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block unpacks the signals from the message at each timestep:

• Standard: The signal is unpacked at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following values.

 CAN FD Unpack

15-31

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block unpacks Signal-B along
with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block unpacks Signal-C along
with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
unpack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). See “Conversion Formula” on page 15-33 to understand how unpacked raw values are
converted to physical values.

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. See “Conversion Formula” on page 15-33 to understand how unpacked raw values are
converted to physical values.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a message identifier. The data type of this port is uint32.

Output remote
(Disabled for CAN FD protocol.) Select this option to output the message remote frame status.
This option adds a new output port to the block. The data type of this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option adds a new output port to the
block. The data type of this port is double.

15 Blocks

15-32

Output length
Select this option to output the length of the message in bytes. This option adds a new output
port to the block. The data type of this port is uint8.

Output error
Select this option to output the message error status. This option adds a new output port to the
block. An output value of 1 on this port indicates that the incoming message is an error frame;
otherwise the output value is 0. The data type of this port is uint8.

Output status
Select this option to output the message received status. The status is 1 if the block receives new
message and 0 if it does not. This option adds a new output port to the block. The data type of
this port is uint8.

Output Bit Rate Switch (BRS)
(Disabled for CAN protocol.) Select this option to output the message bitrate switch. This option
adds a new output port to the block. The data type of this port is boolean.

Output Error Status Indicator (ESI)
(Disabled for CAN protocol.) Select this option to output the message error status. This option
adds a new output port to the block. The data type of this port is boolean.

Output Data Length Code (DLC)
(Disabled for CAN protocol.) Select this option to output the message data length. This option
adds a new output port to the block. The data type of this port is double.

If you do not select an Output ports option, the number of output ports on your block depends on
the number of signals you specify.

Conversion Formula

The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.

See Also
Blocks
CAN FD Configuration | CAN FD Receive | CAN FD Pack

Introduced in R2018a

 CAN FD Unpack

15-33

CAN Log
Log received CAN messages

Library
Vehicle Network Toolbox: CAN Communication

Description
The CAN Log block logs CAN messages from the CAN network or messages sent to the blocks input
port to a .mat file. You can load the saved messages into MATLAB for further analysis or into another
Simulink model.

Configure your CAN Log block to log from the Simulink input port. For more information, see “Log
and Replay CAN Messages”.

The Log block appends the specified filename with the current date and time, creating unique log
files for repeated logging.

If you want to use messages logged using Simulink blocks in the MATLAB Command window, use
canMessage to convert messages to the correct format.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Note You cannot have more than one CAN Log block in a model using the same PEAK-System device
channel.

Other Supported Features

The CAN Log block supports the use of Simulink Accelerator and Rapid Accelerator mode. Using this
feature, you can speed up the execution of Simulink models. For more information on this feature, see
the Simulink documentation.

The CAN Log block supports the use of code generation along with the packNGo function to group
required source code and dependent shared libraries. For more information, see “Code Generation”
on page 15-34.

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

15 Blocks

15-34

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip If you are logging from the network, you need to configure your CAN channel with a CAN
Configuration block.

File name
Type the name and path of the file to log CAN messages to, or click Browse to browse to a file
location.

The model appends the log file name with the current date and time in the YYYY-MMM-
DD_hhmmss format. You can also open the block mask and specify a unique name to differentiate
between your files for repeated logging.

Variable name
Type the variable saved in the MAT-file that holds the CAN message information.

Maximum number of messages to log
Specify the maximum number of messages this block can log from the selected device or port.
The specified value must be a positive integer. If you do not specify a value the block uses the
default value of 10,000 messages. The log file saves the most recent messages up to the
specified maximum number.

 CAN Log

15-35

Log messages from
Select the source of the messages logged by the block. Possible values are CAN Bus or Input
port. To log messages from the network, you must specify a device.

Device
Select the device on the CAN network that you want to log messages from. This filed is
unavailable if you select Input port for Log messages from option.

Sample time
Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the CAN Log
block runs during simulation. If the block is inside a triggered subsystem or to inherit sample
time, you can specify –1 as your sample time. You can also specify a MATLAB variable for sample
time. The default value is 0.01 (in seconds).

See Also
Blocks
CAN Replay

Topics
“Log and Replay CAN Messages”

Introduced in R2011b

15 Blocks

15-36

CAN Pack
Pack individual signals into CAN message

Library
CAN Communication

Embedded Coder/ Embedded Targets/ Host Communication

Description
The CAN Pack block loads signal data into a message at specified intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of block inputs is dynamic and depends on
the number of signals you specify for the block. For example, if your block has four signals, it has four
block inputs.

This block has one output port, CAN Msg. The CAN Pack block takes the specified input parameters
and packs the signals into a message.

Other Supported Features

The CAN Pack block supports:

• The use of Simulink Accelerator Rapid Accelerator mode. Using this feature, you can speed up the
execution of Simulink models.

• The use of model referencing. Using this feature, your model can include other Simulink models
as modular components.

• Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

For more information on these features, see the Simulink documentation.

Dialog Box
Use the Function Block Parameters dialog box to select your CAN Pack block parameters.

 CAN Pack

15-37

Parameters

Data is input as
Select your data signal:

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one
input port on your block.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on
the number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block
inputs depends on the number of signals specified in the CANdb file for the selected message.

Note The block supports the following input signals data types: single, double, int8, int16, int32,
int64, uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the Data is input
as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list
This option is available if you specify that your data is input via a CANdb file in the Data is input
as field and you select a CANdb file in the CANdb file field. Select the message to display signal
details in the Signals table.

Message

Name
Specify a name for your CAN message. The default is CAN Msg. This option is available if you
choose to input raw data or manually specify signals. This option in unavailable if you choose to
use signals from a CANdb file.

Identifier type
Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to input raw data or manually specify signals. For
CANdb specified signals, the Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a positive integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. You can also specify

15 Blocks

15-38

hexadecimal values using the hex2dec function. This option is available if you choose to input
raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your data input, the CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw data or manually specify signals.

Remote frame
Specify the CAN message as a remote frame.

Output as bus
Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Signals” (Simulink).

Signals Table

This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, which has the highest bit
index. For example, if you pack one byte of data in little-endian format, with the start bit at 20,
the data bit table resembles this figure.

 CAN Pack

15-39

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest
Address

• BE: Where byte order is in big-endian format (Motorola). In this format you count bits from the
start, which is the least significant bit, to the most significant bit. For example, if you pack one
byte of data in big-endian format, with the start bit at 20, the data bit table resembles this
figure.

15 Blocks

15-40

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block packs the signals into the CAN message at each timestep:

• Standard: The signal is packed at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A

 CAN Pack

15-41

Signal Name Multiplex Type Multiplex Value
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block packs Signal-B along with
Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block packs Signal-C along with
Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
pack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 15-42 to understand how physical
values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. See “Conversion Formula” on page 15-42 to understand how physical
values are converted to raw values packed into a message.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Conversion Formula

The conversion formula is

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal, and raw_value is the packed signal
value.

See Also
Blocks
CAN Unpack

15 Blocks

15-42

Functions
canMessageBusType

Introduced in R2009a

 CAN Pack

15-43

CAN Receive
Receive CAN messages from specified CAN device

Library
Vehicle Network Toolbox: CAN Communication

Description
The CAN Receive block receives messages from the CAN network and delivers them to the Simulink
model. It outputs one message or all messages at each timestep, depending on the block parameters.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN Receive block has two output ports:

• The f() output port is a trigger to a Function-Call subsystem. If the block receives a new
message, it triggers a Function-Call from this port. You can then connect to a Function-Call
Subsystem to unpack and process a message.

• The CAN Msg output port contains a CAN message received at that particular timestep.

The CAN Receive block stores CAN messages in a first-in, first-out (FIFO) buffer. The FIFO buffer
delivers the messages to your model in the queued order at every timestep.

Note You cannot have more than one CAN Receive block in a model using the same PEAK-System
device channel.

Other Supported Features

The CAN Receive block supports the use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models. For more information on this feature, see the Simulink
documentation.

The CAN Receive block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries. For more information, see “Code
Generation” on page 15-45.

15 Blocks

15-44

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip Configure your CAN Configuration block before you configure the CAN Receive block
parameters.

Device
Select the CAN device and a channel on the device you want to receive CAN messages from. This
field lists all the devices installed on the system. It displays the vendor name, the device name,
and the channel ID. The default is the first available device on your system.

Standard IDs Filter
Select the filter on this block for standard IDs. Valid choices are:

• Allow all (default): Allows all standard IDs to pass the filter.
• Allow only: Allows only ID or range of IDs specified in the text field. You can specify a single

ID or an array of IDs. You can also specify disjointed IDs or arrays separated by a comma. For
example, to accept IDs from 400 through 500, and 600 through 650, enter [[400:500]

 CAN Receive

15-45

[600:650]]. Standard IDs must be positive integers from 0 to 2047. You can also specify
hexadecimal values with the hex2dec function.

• Block all: Blocks all standard IDs from passing the filter.

Extended IDs Filter
Select the filter on this block for extended IDs. Valid choices are:

• Allow all (default): Allows all extended IDs to pass the filter.
• Allow only: Allows only those IDs specified in the text field. You can specify a single ID or an

array of IDs. You can also specify disjointed IDs or arrays separated by a comma. For example,
to accept IDs from 3000 through 3500, and 3600 through 3620, enter [[3000:3500]
[3600:3620]]. Extended IDs must be positive integers from 0 to 536870911. You can also
specify hexadecimal values using the hex2dec function.

• Block all: Blocks all extended IDs from passing the filter.

Sample time
Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the CAN
Receive block runs during simulation. If the block is inside a triggered subsystem or to inherit
sample time, you can specify -1 as your sample time. You can also specify a MATLAB variable for
sample time. The default value is 0.01 (in seconds).

Number of messages received at each timestep
Select how many messages the block receives at each specified timestep. Valid choices are:

• all (default): The CAN Receive block delivers all available messages in the FIFO buffer to the
model during a specific timestep. The block generates one function call for each delivered
message. The output port always contains one CAN message at a time.

• 1: The CAN Receive block delivers one message per timestep from the FIFO buffer to the
model.

If the block does not receive any messages before the next timestep, it outputs the last received
message.

Output as bus
Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Signals” (Simulink).

See Also
Blocks
CAN Configuration | CAN Unpack

Functions
canMessageBusType

Introduced in R2009a

15 Blocks

15-46

CAN Replay
Replay logged CAN messages

Library
Vehicle Network Toolbox: CAN Communication

Description
The CAN Replay block replays logged messages from a .mat file to a CAN network or to Simulink.
You need a CAN Configuration block to replay to the network.

To replay messages logged in the MATLAB Command window in your Simulink model, convert them
into a compatible format using vntslgate and save it to a separate file. For more information, see
“Log and Replay CAN Messages”.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Replay Timing

When you replay logged messages, Simulink uses the original timestamps on the messages. When you
replay to a network, the timestamps correlate to real time, and when you replay to the Simulink input
port it correlates to simulation time. If the timestamps in the messages are all 0, all messages are
replayed as soon as the simulation starts, because simulation time and real time will be ahead of the
timestamps in the replayed messages.

Other Supported Features

The CAN Replay block supports the use of Simulink Accelerator Rapid Accelerator mode. Using this
feature, you can speed up the execution of Simulink models.

For more information on this feature, see the Simulink documentation.

The CAN Replay block supports the use of code generation along with the packNGo function to group
required source code and dependent shared libraries. For more information, see “Code Generation”
on page 15-47.

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

 CAN Replay

15-47

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip Configure your CAN Configuration block before you configure the CAN Receive block
parameters.

File name
Specify the name and path of the file that contains logged CAN messages that you can replay. You
can click Browse to browse to a file location and select the file.

Variable name
Specify the variable saved in the MAT-file that holds the CAN message information.

Number of times to replay messages
Specify the number of times you want the message replayed in your model. You can specify any
positive integer, including Inf. Specifying Inf continuously replays messages until simulation
stops.

Replay messages to
Specify if the model is replaying messages to the CAN network or an output port. Select a device
to replay to the CAN network.

Device
Select the device on the CAN network to replay messages to. This filed is unavailable if you select
Input port for Replay message to option.

15 Blocks

15-48

Sample time
Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the CAN
Replay block runs during simulation. If the block is inside a triggered subsystem or to inherit
sample time, you can specify –1 as your sample time. You can also specify a MATLAB variable for
sample time. The default value is 0.01 (in seconds).

Output as bus
Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Signals” (Simulink).

See Also
Blocks
CAN Log

Functions
canMessageBusType | canMessageReplayBlockStruct

Topics
“Log and Replay CAN Messages”

Introduced in R2011b

 CAN Replay

15-49

CAN Transmit
Transmit CAN message to selected CAN device

Library
Vehicle Network Toolbox: CAN Communication

Description
The CAN Transmit block transmits messages to the CAN network using the specified CAN device. The
CAN Transmit block can transmit a single message or an array of messages during a given timestep.
To transmit an array of messages, use a mux (multiplex) block from the Simulink block library.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN Transmit block has one input port. This port accepts a CAN message packed using the CAN
Pack block. It has no output ports.

CAN is a peer-to-peer network, so when transmitting messages on a physical bus at least one other
node must be present to properly acknowledge the message. Without another node, the transmission
will fail as an error frame, and the device will continually retry to transmit.

Other Supported Features

The CAN Transmit block supports the use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models. For more information on this feature, see the Simulink
documentation.

The CAN Transmit block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries. For more information, see Code
Generation on page 15-50.

Code Generation
Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

15 Blocks

15-50

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Parameters

Tip Configure your CAN Configuration block before you configure the CAN Transmit block
parameters.

Device
Select the CAN device and channel for transmitting CAN messages to the network. This list
shows all the devices installed on the system. It displays the vendor name, the device name, and
the channel ID. The default is the first available device on your system.

Note: When using PEAK-System devices, CAN Transmit blocks in multiple enabled subsystems
might skip some messages. If possible, replace the enabled subsystems with a different type of
conditional subsystem, such as an if-action, switch-case-action, or triggered subsystem; or
redesign your model so that all the CAN Transmit blocks are contained within a single enabled
subsystem.

Transmit Options: On data change
When event-based transmission is enabled, messages are transmitted only at those time steps
when a change in message data is detected. When the input data matches the most recent
transmission for a given message ID, the message is not re-transmitted.

Event and periodic transmission can both be enabled to work together simultaneously. If neither
is selected, the default behavior is to transmit the current input at each time step.

Transmit Options: Periodic
Select this option to enable periodic transmission of the message on the configured channel at the
specified message period. The period references real time, regardless of the Simulink model time
step size (fundamental sample time) or block execution sample time. This is equivalent to the
MATLAB function transmitPeriodic.

 CAN Transmit

15-51

The periodic transmission is a nonbuffered operation. Only the last CAN message or set of muxed
messages present at the input of the CAN Transmit block is sent when the time period occurs.

Transmit Options: Message period (in seconds)
Specify a period in seconds. This value is used to transmit the message in the specified period. By
default this value is 1.000 seconds.

See Also
Blocks
CAN Configuration | CAN Pack

Introduced in R2009a

15 Blocks

15-52

CAN Unpack
Unpack individual signals from CAN messages

Library
CAN Communication

Embedded Coder/ Embedded Targets/ Host Communication

Description
The CAN Unpack block unpacks a CAN message into signal data using the specified output
parameters at every timestep. Data is output as individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number of output ports is dynamic and
depends on the number of signals you specify for the block to output. For example, if your block has
four signals, it has four output ports.

Other Supported Features

The CAN Unpack block supports:

• The use of Simulink Accelerator Rapid Accelerator mode. Using this feature, you can speed up the
execution of Simulink models.

• The use of model referencing. Using this feature, your model can include other Simulink models
as modular components.

• Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or unsigned
integers greater than 32 bits long.

For more information on these features, see the Simulink documentation.

Dialog Box
Use the Function Block Parameters dialog box to select your CAN message unpacking parameters.

 CAN Unpack

15-53

Parameters

Data to be output as
Select your data signal:

• raw data: Output data as a uint8 vector array. If you select this option, you only specify the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

• manually specified signals: Allows you to specify data signals. If you select this option, use
the Signals table to create your signals message manually.

The number of output ports on your block depends on the number of signals you specify. For
example, if you specify four signals, your block has four output ports.

• CANdb specified signals: Allows you to specify a CAN database file that contains data
signals. If you select this option, select a CANdb file.

The number of output ports on your block depends on the number of signals specified in the
CANdb file. For example, if the selected message in the CANdb file has four signals, your
block has four output ports.

Note For manually or CANdb specified signals, the default output signal data type is double. To
specify other types, use a Signal Specification block. This allows the block to support the following
output signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and
boolean. The block does not support fixed-point types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message section of the dialog box. The
signals specified in the CANdb file populate Signals table.

Note File names that contain non-alphanumeric characters such as equal signs, ampersands, and
so forth are not valid CAN database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters before you use them.

Message list
This option is available if you specify that your data is to be output as a CANdb file in the Data to
be output as list and you select a CANdb file in the CANdb file field. You can select the message
that you want to view. The Signals table then displays the details of the selected message.

Message

Name
Specify a name for your CAN message. The default is CAN Msg. This option is available if you
choose to output raw data or manually specify signals.

Identifier type
Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit

15 Blocks

15-54

identifier. This option is available if you choose to output raw data or manually specify signals.
For CANdb-specified signals, the Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify –1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your output data, the CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to output raw data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and you cannot
edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the start, which is the least significant bit, to the most significant bit, which has the highest bit
index. For example, if you pack one byte of data in little-endian format, with the start bit at 20,
the data bit table resembles this figure.

 CAN Unpack

15-55

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest
Address

• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from
the start, which is the least significant bit, to the most significant bit. For example, if you pack
one byte of data in big-endian format, with the start bit at 20, the data bit table resembles this
figure.

15 Blocks

15-56

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block unpacks the signals from the CAN message at each timestep:

• Standard: The signal is unpacked at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A

 CAN Unpack

15-57

Signal Name Multiplex Type Multiplex Value
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every
timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block unpacks Signal-B along
with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block unpacks Signal-C along
with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
unpack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). See “Conversion Formula” on page 15-59 to understand how unpacked raw values are
converted to physical values.

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. See “Conversion Formula” on page 15-59 to understand how unpacked raw values are
converted to physical values.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a CAN message identifier. The data type of this port is uint32.

Output remote
Select this option to output the message remote frame status. This option adds a new output port
to the block. The data type of this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option adds a new output port to the
block. The data type of this port is double.

15 Blocks

15-58

Output length
Select this option to output the length of the message in bytes. This option adds a new output
port to the block. The data type of this port is uint8.

Output error
Select this option to output the message error status. This option adds a new output port to the
block. An output value of 1 on this port indicates that the incoming message is an error frame;
otherwise the output value is 0. The data type of this port is uint8.

Output status
Select this option to output the message received status. The status is 1 if the block receives new
message and 0 if it does not. This option adds a new output port to the block. The data type of
this port is uint8.

If you do not select an Output ports option, the number of output ports on your block depends on
the number of signals you specify.

Conversion Formula

The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.

See Also
Blocks
CAN Pack

Introduced in R2009a

 CAN Unpack

15-59

J1939 CAN Transport Layer
Transport J1939 messages via CAN

Library
Vehicle Network Toolbox: J1939 Communication

Description
The J1939 CAN Transport Layer block allows J1939 communication via a CAN bus. This block
associates a user-defined J1939 network configuration with a connected CAN device. Use one block
for each J1939 Network Configuration block in your model.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft® C++ compiler.

Parameters
Config name

The name of the J1939 Network Configuration block to associate with.
Device

The CAN device, chosen from all connected CAN devices.
Bus speed

Speed of the CAN bus. The J1939 protocol specifies two rates of 250k and 500k. The default is
250000.

Sample time
Simulation refresh rate. Specify the sampling time of the block during simulation. This value
defines the frequency at which the J1939 CAN Transport Layer block runs during simulation. For
information about simulation sample timing, see “What Is Sample Time?” (Simulink) If the block
is inside a triggered subsystem or inherits a sample time, specify a value of -1. You can also
specify a MATLAB variable for sample time. The default value is 0.01 seconds.

15 Blocks

15-60

See Also
Blocks

Introduced in R2015b

 J1939 CAN Transport Layer

15-61

J1939 Network Configuration
Define J1939 network configuration name and database file
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Network Configuration block is where you define a configuration name and specify the
associated user-supplied J1939 database. You can include more than one block per model, each
corresponding to a unique configuration on the CAN bus.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Parameters
Configuration name — Define a name for this J1939 network configuration
ConfigX (default) | character vector

The default value is ConfigX, where the number X automatically increases from 1 based on the
number of existing blocks.

Programmatic Use

ConfigName

Database File — Specify the J1939 database file name relative to the current folder
not set (default) | character vector

An example file name, enter J1939.dbc if the file is in the current folder; otherwise enter the full
path with the file name, such as C:\work\J1939.dbc.

The database file defines the J1939 parameter groups and nodes, and must be in the .dbc format
defined by Vector Informatik GmbH.

Programmatic Use

DbFile

15 Blocks

15-62

See Also
J1939 CAN Transport Layer | J1939 Node Configuration | J1939 Receive | J1939 Transmit

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

 J1939 Network Configuration

15-63

J1939 Node Configuration
Configure J1939 node with address and network management attributes
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Node Configuration block is where you define a node and associate it with a specific
network configuration. Its Message information is read from the database for that configuration,
unless you are creating and configuring a custom node.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Ports
Output

Address — Returns the effective address of the node
int8

This optional output port exists when you check Output current node address in the dialog box.

AC Status — Indicates the success (1) or failure (0) of the node’s address claim
0 | 1

This optional output port exists when you check Output address claim status in the dialog box.

Parameters
Config name — ID of the J1939 network configuration to associate with this node
ConfigX (default) | character vector

This ID is used to access the corresponding J1939 database.

Programmatic Use

ConfigName

15 Blocks

15-64

Node name — name of this J1939 node
NodeX (default) | character vector

The available list shows none if no J1939 network configuration is found or no node is defined in the
associated database. If you are creating a custom node, the node name must be unique within its
J1939 network configuration.

Programmatic Use

NodeID

Message — Nine network attributes as defined by the database file consistent with the
J1939 protocol
vector array

These parameters are read-only unless you are defining a custom node.

• Allow arbitrary address — Allow/disallow the node to switch to an arbitrary address if the
station address is not available. If this option is off and the node loses its address claim, the node
goes silent.

Node Address — Station address, decimal, 8-bit.
• Industry Group — Decimal, 3-bit.
• Vehicle System — Decimal, 7-bit.
• Vehicle System Instance — Identifies one particular occurrence of a given vehicle system in a

given network. If only one instance of a certain vehicle system exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 4-bit.

• Function ID — Decimal, 8-bit.
• Function Instance — Identifies the particular occurrence of a given function in a vehicle system

and given network. If only one instance of a certain function exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 5-bit.

• ECU Instance — This 3-bit field is used when multiple electronic control units (ECU) are involved
in performing a single function. If only one ECU is used for a particular controller application
(CA), then this field must be set to 0 to define it as the first instance.

• Manufacturer Code — Decimal, 11-bit.
• Identity Number — Decimal, 21-bit.

Programmatic Use

AllowACC
NodeAddress
IndustryGroup
VehicleSystem
VehicleSystemInstance
FunctionID
FunctionInstance
ECUInstance
ManufacturerCode
IDNumber

Sample time — Simulation refresh rate
0.01 (default) | double

 J1939 Node Configuration

15-65

Specify the sampling time of the block during simulation. This value defines the frequency at which
the J1939 Node Configuration updates its optional output ports. If the block is inside a triggered
subsystem or inherits a sample time, specify a value of -1. You can also specify a MATLAB variable
for sample time. The default value is 0.01 seconds. For information about simulation sample timing,
see “What Is Sample Time?” (Simulink)

Programmatic Use

SampleTime

Output current node address — Enable or disable the Address port display
off (default) | on

Enable or disable the Address output port to show the effective address. The effective address is
different from the predefined station address if Allow arbitrary address is selected, a name conflict
occurs, and the current node has lower priority. The output signal is a double value from 0 to 253.
This port is disabled by default.

Programmatic Use

OutputAddress

Output address claim status — Enable or disable the address claim AC Status display
off (default) | on

Enable or disable the address claim AC Status output port to show the success of an address claim.
The output value is binary, 1 for success or 0 for failure. This port is disabled by default.

Programmatic Use

OutputACStatus

See Also
J1939 Receive | J1939 Transmit | J1939 CAN Transport Layer | J1939 Network Configuration

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

15 Blocks

15-66

J1939 Receive
Receive J1939 parameter group messages
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Receive block receives a J1939 message from the configured CAN device. The J1939
database file defines the nodes and parameter groups. You specify the J1939 database with the J1939
Network Configuration block.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Ports
Output

Data — Data output
double

Depending on the J1939 parameter group defined in the J1939 database file, the block can have
multiple data output signal ports. The block output data type is double.

Msg Status — Message received status
0 | 1

When Output New Message Received status is checked in the dialog box, this port outputs 1 when
a new message is received from the CAN bus; otherwise, outputs 0.

Parameters
Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate with. This is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified

 J1939 Receive

15-67

J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.
Programmatic Use

ConfigName

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.
Programmatic Use

NodeName

Parameter Group — Parameter group number (PGN) and name from database
character vector

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

Note If you change any parameter group settings within your J1939 database file, you must then
open the J1939 Receive block dialog box and select the same Parameter Group, then click OK or
Apply to update the parameter group information in the block.

Programmatic Use

PGList

Signals — Signals defined in the parameter group
array of character vectors

Signals defined in the parameter group. The Min and Max settings are read from the database, but
by default the block does not clip signal values that exceed this range.
Programmatic Use

PGName
MsgLength
SignalInfo
NSignals
StartBits
SignalSizes
ByteOrders
DataTypes
MultiplexTypes
MultiplexValues
Factors
Offsets
Minimums
Maximums
Units
SPN
Comment

15 Blocks

15-68

Source Address Filter — Filter messages based on source address
Allow all (default) | Allow only

Filter messages based on source address:

• Allow only — Lets you specify a single source address of interest.
• Allow all — Accepts messages from any source address. This is the default.

Programmatic Use

SrcAddrFilter
SrcAddress

Destination Address Filter — Filter out message based on destination address
global and node specific (default) | global only | node specific only

Filter out message based on destination address:

• global only — Receive only broadcast messages.
• node specific only — Receive only messages addressed to this node.
• global and node specific — Receive all broadcast and node-addressed messages. This is the

default.

Programmatic Use

DestAddrFilter

Sample time — Simulation refresh rate
-1 (default) | double

Simulation refresh rate. Specify the sampling time of the block during simulation. This value defines
the frequency at which the J1939 Receive updates its output ports. If the block is inside a triggered
subsystem or inherits a sample time, specify a value of -1. You can also specify a MATLAB variable
for sample time. The default value is 0.01 seconds. For information about simulation sample timing,
see “What Is Sample Time?” (Simulink)

Programmatic Use

SampleTime

Output New Message Received status — Create a Msg Status output
0 (default) | 1

Select this check box to create a Msg Status outputMsg Status output port. Its output signal
indicates a new incoming message, showing 1 for a new message received, or 0 when there is no new
message.

Programmatic Use

outputNew

See Also
J1939 CAN Transport Layer | J1939 Network Configuration | J1939 Node Configuration | J1939
Transmit

 J1939 Receive

15-69

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

15 Blocks

15-70

J1939 Transmit
Transmit J1939 message
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Transmit block transmits a J1939 message. The J1939 database file defines the nodes and
parameter groups. You specify the J1939 database with the J1939 Network Configuration block.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft C++ compiler.

Ports
Input

Data — Input data
signal

Depending on the J1939 parameter group and signals defined in the J1939 database file, the block
can have multiple data input ports.

Trigger — Enables the transmission of message
0 | 1

Enables the transmission of the message for that sample. A value of 1 specifies to send, a value of 0
specifies not to send.

Parameters
Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate with. This is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified

 J1939 Transmit

15-71

J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.

Programmatic Use

ConfigName

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.

Programmatic Use

NodeName

Parameter Group — Group number (PGN) and name
int8

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

Note If you change any parameter group settings within your J1939 database file, you must then
open the J1939 Transmit block dialog box and select the same Parameter Group, then click OK or
Apply to update the parameter group information in the block.

Programmatic Use

PGName

Signals — Signals defined in parameter group
array of character vectors

Signals defined in the parameter group. The Min and Max settings are read from the database, but
by default the block does not clip signal values that exceed this range.

Programmatic Use

SignalInfo
NSignals
StartBits
SingalSizes
ByteOrders
DataTypes
MultiplexTypes
MultiplexValuses
Factors
Offsets
Minimums
Maximums
Units
SPN
Comment

15 Blocks

15-72

PG Priority — Priority of the parameter group
int8

Priority of the parameter group, read from the database. This priority setting resolves clashes of
multiple parameter groups transmitting on the same bus at the same time. If a conflict occurs, the
priority group with lower priority (i.e., higher value) will refrain from transmitting. The value can
range from 0 (highest priority) to 7 (lowest).

Programmatic Use

PGPriority

Destination Address — Name of the destination node
int8

Name of the destination node. The default is the first node defined in the database, otherwise
Custom.

For a custom destination address, you can specify 0–253 for the address of the destination node. For
broadcasting to all nodes, use the Custom Destination Address setting with an address of 255.

Programmatic Use

DestAddrID

See Also
J1939 CAN Transport Layer | J1939 Network Configuration | J1939 Node Configuration | J1939
Receive

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

 J1939 Transmit

15-73

XCP CAN Configuration
Configure XCP slave connection
Library: Simulink Real-Time / XCP / CAN

Vehicle Network Toolbox / XCP Communication / CAN

Description
The XCP CAN Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP slave connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP CAN Configuration . Use
one XCP CAN Configuration to configure one slave connection for data acquisition or stimulation. If
you add XCP CAN Data Acquisition and XCP CAN Data Stimulation blocks, your model checks to see
if there is a corresponding XCP CAN Configuration block. If there is no corresponding XCP CAN
Configuration block, the model prompts to add one.

Other Supported Features

The XCP CAN communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Config name — Specify XCP CAN session name
'CAN_Config1' (default)

Specify a unique name for your XCP CAN session.
Programmatic Use

SlaveName

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP CAN session.
Programmatic Use

A2LFile

Enable seed/key security — Select that key required to establish connection
'off'

Select this option if your slave requires a secure key to establish connection. Select a file that
contains the seed/key definition to enable the security.

15 Blocks

15-74

Programmatic Use

EnableSecurity

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security (EnableSecurity), this field is enabled. Click Browse to
select the file that contains seed and key security algorithm that unlocks an XCP slave module. This
parameter is available on in Windows Desktop Simulation for Vehicle Network Toolbox.

Programmatic Use

SeedKeyLib

Output connection status — Display connection status
'off'

Select this option to display the status of the connection to the slave module. Selecting this option
adds a new output port.

Programmatic Use

EnableStatus

See Also
Blocks
XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN Transport Layer

Introduced in R2013a

 XCP CAN Configuration

15-75

XCP CAN Data Acquisition
Acquire selected measurements from configured slave connection
Library: Simulink Real-Time / XCP / CAN

Vehicle Network Toolbox / XCP Communication / CAN

Description
The XCP CAN Data Acquisition block acquires data from the configured slave connection based on
the selected measurements. The block uses the XCP CAN transport layer to obtain raw data for the
selected measurements at the specified simulation time step. Configure your XCP connection and use
the XCP CAN Data Acquisition block to select your event and measurements for the configured slave
connection. The block displays the selected measurements as output ports.

Other Supported Features

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Config name — Specify XCP CAN session name
select from list

Select the name of XCP configuration you want to use. The list displays all available names specified
in the XCP CAN Configuration blocks in the model. Selecting a configuration displays events and
measurements available in the A2L file of this configuration.

Note You can acquire measurements for only one event by using an XCP CAN Data Acquisition block.
Use one block for each event whose measurements you want to acquire.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the available list of events. The XCP CAN Configuration block uses the specified
A2L file to populate the events list.

Programmatic Use

EventName

15 Blocks

15-76

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to add it to the selected measurements. Hold the Ctrl key
on your keyboard to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the
Search box. The All Measurements lists displays a list of all matching names. Click the x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.
Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on', the block:

• Sets the port data type according to the type definition in the A2L file
• Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A_UINT64, A_INT64, FLOAT32_IEEE, and FLOAT64_IEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is COLUMN_DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.
Programmatic Use

ForceDatatypes

 XCP CAN Data Acquisition

15-77

DAQ List Priority — Specify a priority value for slave device driver
priority value

Specify a priority value as an integer from 0 to 255 for the slave device driver to prioritize
transmission of data packets. The slave can accumulate XCP packets for lower priority DAQ lists
before transmission to the master. A value of 255 has the highest priority. The SET_DAQ_LIST_MODE
command communicates the DAQ List Priority value from master to slave. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Programmatic Use

DAQPriority

Sample time — Specify sampling time of block
0.01 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP CAN Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify –1 as your sample
time. You can also specify a MATLAB variable for sample time. The default value is 0.01 (in seconds).

Programmatic Use

SampleTime

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Stimulation | XCP CAN Transport Layer

Introduced in R2013a

15 Blocks

15-78

XCP CAN Data Stimulation
Perform data stimulation on selected measurements
Library: Simulink Real-Time / XCP / CAN

Vehicle Network Toolbox / XCP Communication / CAN

Description
The XCP CAN Data Stimulation block sends data to the selected slave connection for the selected
event measurements. The block uses the XCP CAN transport layer to output raw data for the selected
measurements at the specified stimulation time step. Configure your XCP session and use the XCP
CAN Data Stimulation block to select your event and measurements on the configured slave
connection. The block displays the selected measurements as input ports.

Other Supported Features

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Config name — Specify XCP CAN session name
select from list

Select the name of XCP configuration that you want to use. The list displays all available names
specified in the available XCP CAN Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration.

Note You can stimulate measurements for only one event by using an XCP CAN Data Stimulation
block. Use one block for each event whose measurements you want to stimulate.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the event list. The XCP CAN Configuration block uses the specified A2L file to
populate the events list.

Programmatic Use

EventName

 XCP CAN Data Stimulation

15-79

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

In the block parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements lists displays a list of all matching names. Click the x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.
Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on', the block:

• Sets the port data type according to the type definition in the A2L file
• Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A_UINT64, A_INT64, FLOAT32_IEEE, and FLOAT64_IEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is COLUMN_DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.
Programmatic Use

ForceDatatypes

15 Blocks

15-80

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Transport Layer

Introduced in R2013a

 XCP CAN Data Stimulation

15-81

XCP CAN Transport Layer
Transport XCP messages via CAN

Library
Vehicle Network Toolbox: CAN Communication

Vehicle Network Toolbox: XCP Communication

Description
The XCP CAN Transport Layer subsystem uses the specified device to transport and receive XCP
messages.

Use this block with an XCP Data Acquisition block to acquire and analyze specific XCP messages. Use
this block with an XCP Data Stimulation block to send specific information to modules.

Other Supported Features

The XCP communication blocks support the use of Simulink Accelerator and Rapid Accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information on this
feature, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Device

+

Select a CAN device from the list of devices available to your system.
Bus speed

Set the bus speed property for the selected device. The default bus speed is the default assigned
by the selected device.

Sample time
Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the XCP
CAN Transport Layer subsystem and the underlying blocks run during simulation. If the block is
inside a triggered subsystem or to inherit sample time, you can specify –1 as your sample time.
You can also specify a MATLAB variable for sample time. The default value is 0.01 (in seconds).

15 Blocks

15-82

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation

Introduced in R2013a

 XCP CAN Transport Layer

15-83

XCP CAN Transport Layer Receive
Receive XCP messages via CAN device

Description
The XCP CAN Transport Layer Receive block receives XCP messages from a CAN Receive block.

Other Supported Features

The XCP communication blocks support the use of Simulink Accelerator and Rapid Accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information on this
feature, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Sample time

Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the XCP
CAN Transport Layer Receive block runs during simulation. If the block is inside a triggered
subsystem or to inherit sample time, you can specify -1 as your sample time. You can also specify
a MATLAB variable for sample time. The default value is -1 (in seconds).

See Also
Blocks
CAN Receive | XCP CAN Transport Layer | XCP CAN Transport Layer Transmit

Introduced in R2013a

15 Blocks

15-84

XCP CAN Transport Layer Transmit
Transmit queued XCP messages

Description
The XCP CAN Transport Layer Transmit block connects to a CAN Transmit block to transmit queued
XCP messages.

Other Supported Features

The XCP communication blocks support the use of Simulink Accelerator and Rapid Accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information on this
feature, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Maximum number of messages

Enter the maximum number of messages the block can transmit. Value must be a positive integer.
Sample time

Specify the sampling time of the block during simulation, which is the simulation time as
described by the Simulink documentation. This value defines the frequency at which the XCP
CAN Transport Layer block runs during simulation. If the block is inside a triggered subsystem or
to inherit sample time, you can specify -1 as your sample time. You can also specify a MATLAB
variable for sample time. The default value is 0.01 (in seconds).

See Also
Blocks
CAN Transmit | XCP CAN Transport Layer | XCP CAN Transport Layer Receive

Introduced in R2013a

 XCP CAN Transport Layer Transmit

15-85

XCP UDP Configuration
Configure XCP UDP slave connection
Library: Simulink Real-Time / XCP / UDP

Vehicle Network Toolbox / XCP Communication / UDP

Description
The XCP UDP Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP slave connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP UDP Configuration . Use
one XCP UDP Configuration to configure one slave connection for data acquisition or stimulation. If
you add XCP UDP Data Acquisition and XCP UDP Data Stimulation blocks, your model checks to see
if there is a corresponding XCP UDP Configuration block. If there is no corresponding XCP CAN
Configuration block, the model prompts to add one.

Other Supported Features

The XCP UDP communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Config name — Specify XCP UDP session name
'UDP_Config1' (default)

Specify a unique name for your XCP session.
Programmatic Use

SlaveName

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP session.
Programmatic Use

A2LFile

Enable seed/key security — Select that key required to establish connection
'off'

Select this option if your slave requires a secure key to establish connection. Select a file that
contains the seed/key definition to enable the security.

15 Blocks

15-86

Programmatic Use

EnableSecurity

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security, this field is enabled. Click Browse to select the file that
contains seed and key security algorithm that unlocks an XCP slave module. This parameter is
available on in Windows Desktop Simulation for Vehicle Network Toolbox.
Programmatic Use

SeedKeyLib

Output connection status — Display connection status
'off'

Select this option to display the status of the connection to the slave module. Selecting this option
adds a new output port.
Programmatic Use

EnableStatus

Disable CTR error detection — Disable CTR error detection scheme
'on' (default) | 'off'

To detect missing packets, the block can check the counter value in each XCP packet header. When
'on', counter error detection for packet headers is disabled. When 'off', the counter Error
detection scheme is enabled.
Programmatic Use

HeaderErrDet

Error detection scheme — Select CTR error detection scheme
One counter for all CTOs and DTOs (default) | Separate counters for
(RES,ERR,EV,SERV) and (DAQ) | Separate counters for (RES,ERR), (EV,SERV) and
(DAQ)

To detect missing packets, the block can check the counter value in each XCP packet header and
apply an error detection scheme.
Programmatic Use

CTRScheme

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.
Programmatic Use
Block Parameter: SampleTime

Local IP Address — Maser IP address
x.x.x.x

 XCP UDP Configuration

15-87

Enter the IP address to which you want to connect.

Programmatic Use

LocalAddress

Local Port — Master IP port
1–65535

The combination of Local IP address and Local port must be unique.

Programmatic Use

LocalPort

See Also
Blocks
XCP UDP Data Acquisition | XCP UDP Data Stimulation

Introduced in R2019a

15 Blocks

15-88

XCP UDP Data Acquisition
Acquire selected measurements from configured slave connection
Library: Simulink Real-Time / XCP / UDP

Vehicle Network Toolbox / XCP Communication / UDP

Description
The XCP UDP Data Acquisition block acquires data from the configured slave connection based on the
selected measurements. The block uses the XCP UDP transport layer to obtain raw data for the
selected measurements at the specified simulation time step. Configure your XCP connection and use
the XCP UDP Data Acquisition block to select your event and measurements for the configured slave
connection. The block displays the selected measurements as output ports.

Other Supported Features

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration you want to use. The list displays all available names specified
in the XCP UDP Configuration blocks in the model. Selecting a configuration displays events and
measurements available in the A2L file of this configuration .

Note You can acquire measurements for only one event by using an XCP UDP Data Acquisition block.
Use one block for each event whose measurements you want to acquire.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the available list of events. The XCP UDP Configuration block uses the specified
A2L file to populate the events list.

Programmatic Use

EventName

 XCP UDP Data Acquisition

15-89

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to add it to the selected measurements. Hold the Ctrl key
on your keyboard to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the
Search box. The All Measurements lists displays a list of all matching names. Click the x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.
Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on', the block:

• Sets the port data type according to the type definition in the A2L file
• Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A_UINT64, A_INT64, FLOAT32_IEEE, and FLOAT64_IEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is COLUMN_DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.
Programmatic Use

ForceDatatypes

15 Blocks

15-90

DAQ List Priority — Specify a priority value for slave device driver
priority value

Specify a priority value as an integer from 0 to 255 for the slave device driver to prioritize
transmission of data packets. The slave can accumulate XCP packets for lower priority DAQ lists
before transmission to the master. A value of 255 has the highest priority. The SET_DAQ_LIST_MODE
command communicates the DAQ List Priority value from master to slave. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Programmatic Use

DAQPriority

Sample time — Specify sampling time of block
0.01 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP UDP Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify –1 as your sample
time. You can also specify a MATLAB variable for sample time. The default value is 0.01 (in seconds).

Programmatic Use

SampleTime

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also
Blocks
XCP UDP Configuration | XCP UDP Data Stimulation

Introduced in R2019a

 XCP UDP Data Acquisition

15-91

XCP UDP Data Stimulation
Perform data stimulation on selected measurements
Library: Simulink Real-Time / XCP / UDP

Vehicle Network Toolbox / XCP Communication / UDP

Description
The XCP UDP Data Stimulation block sends data to the selected slave connection for the selected
event measurements. The block uses the XCP UDP transport layer to output raw data for the selected
measurements at the specified stimulation time step. Configure your XCP session and use the XCP
UDP Data Stimulation block to select your event and measurements on the configured slave
connection. The block displays the selected measurements as input ports.

Other Supported Features

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information about
these simulation modes, see the Simulink documentation.

The XCP communication blocks support code generation with limited deployment capabilities. Code
generation requires the Microsoft C++ compiler.

Parameters
Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration that you want to use. The list displays all available names
specified in the available XCP UDP Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration.

Note You can stimulate measurements for only one event by using an XCP UDP Data Stimulation
block. Use one block for each event whose measurements you want to stimulate.

Programmatic Use

SlaveName

Event name — Select an event
select from list

Select an event from the event list. The XCP UDP Configuration block uses the specified A2L file to
populate the events list.

Programmatic Use

EventName

15 Blocks

15-92

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

In the block parameters dialog box, type the name of the measurement you want to use. The All
Measurements lists displays a list of all matching names. Click the x

to clear your search.
Programmatic Use

AllMeasurements

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.
Programmatic Use

SelectedMeasurements

Force Datatypes and Allow Non-Scalar — Set the port data type according to the type
definition in the A2L file
'off' (default) | 'on'

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
When the parameter value is set to 'on', the block:

• Sets the port data type according to the type definition in the A2L file
• Supports up to three-dimensional XCP measurements in Simulink

These ASAP2 data types are supported by corresponding Simulink port data types. SBYTE, UWORD,
SWORD, ULONG, SLONG , A_UINT64, A_INT64, FLOAT32_IEEE, and FLOAT64_IEEE.

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. MATLAB default operation treats matrices as row-major. An XCP measurement can have
LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is COLUMN_DIR, the blocks
rearranges the measurement in memory and ensures that the matrix (row X, col Y) in MATLAB refers
to the same entry as (row X, col Y) on the ECU. The rearrangement causes matrix entries that are
contiguous on the ECU to be noncontiguous in MATLAB and Simulink.
Programmatic Use

ForceDatatypes

 XCP UDP Data Stimulation

15-93

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Programmatic Use

EnableTimestamp

See Also
Blocks
XCP UDP Configuration | XCP UDP Data Acquisition

Introduced in R2019a

15 Blocks

15-94

	Getting Started
	Vehicle Network Toolbox Product Description
	Key Features

	Toolbox Characteristics and Capabilities
	Vehicle Network Toolbox Characteristics
	Interaction Between the Toolbox and Its Components
	Prerequisite Knowledge

	Vehicle Network Communication in MATLAB
	Transmit Workflow
	Receive Workflow

	Transmit and Receive CAN Messages
	Discover Installed Hardware
	Create CAN Channels
	Configure Channel Properties
	Start the Channels
	Create a Message
	Pack a Message
	Transmit a Message
	Receive a Message
	Unpack a Message
	Save and Load CAN Channels
	Disconnect Channels and Clean Up

	Filter Messages
	Multiplex Signals
	Configure Silent Mode

	Hardware Support Package Installation
	Install Hardware Support Package for Device Driver
	Install Support Packages
	Update or Uninstall Support Packages

	CAN Communication Workflows
	CAN Transmit Workflow
	CAN Receive Workflow

	Using a CAN Database
	Load .dbc Files and Create Messages
	Vector CAN Database Support
	Load the CAN Database
	Create a CAN Message
	Access Signals in the Constructed CAN Message
	Add a Database to a CAN Channel
	Update Database Information
	Create and Process Messages Using Database Definitions

	View Message Information in a CAN Database
	View Signal Information in a CAN Message
	Attach a CAN Database to Existing Messages

	Monitoring Vehicle CAN Bus
	Vehicle CAN Bus Monitor
	About the Vehicle CAN Bus Monitor
	Opening the Vehicle CAN Bus Monitor
	Vehicle CAN Bus Monitor Fields

	Using the Vehicle CAN Bus Monitor
	View Messages on a Channel
	Configure the Channel Bus Speed
	Filter CAN Messages in Vehicle CAN Bus Monitor
	Attach a Database
	Change the Message Count
	Change the Number Format
	View Unique Messages
	Save the Message Log File

	XCP Communication Workflows
	XCP Database and Communication Workflow

	A2L File
	Inspect the Contents of an A2L File
	Access an A2L File
	Access Measurement Information
	Access Event Information

	Universal Measurement & Calibration Protocol (XCP)
	XCP Hardware Connection
	Create XCP Channel Using CAN Device
	Configure the Channel to Unlock the Slave

	Read a Single Value
	Write a Single Value
	Read a Calibrated Measurement
	Acquire Measurement Data via Dynamic DAQ Lists
	Stimulate Measurement Data via Dynamic STIM Lists

	J1939
	J1939 Interface
	J1939 Parameter Group Format
	J1939 Network Management
	Address Claiming

	J1939 Transport Protocols
	J1939 Channel Workflow

	CAN Communications in Simulink
	Vehicle Network Toolbox Simulink Blocks
	CAN Communication Workflows in Simulink
	Message Transmission Workflow
	Message Reception Workflow

	Open the Vehicle Network Toolbox Block Library
	Using the Simulink Library Browser
	Using the MATLAB Command Window

	Build CAN Communication Simulink Models
	Build the Message Transmit Part of the Model
	Build the Message Receive Part of the Model
	Save and Run the Model

	Create Custom CAN Blocks
	Blocks Using Simulink Buses
	Blocks Using CAN Message Data Types

	Hardware Limitations
	Vector Hardware Limitations
	Kvaser Hardware Limitations
	National Instruments Hardware Limitations
	File Format Limitations
	MDF-File
	CDFX-File
	BLF-File

	Platform Support

	XCP Communications in Simulink
	Vehicle Network Toolbox XCP Simulink Blocks
	Open the Vehicle Network Toolbox XCP Block Libraries
	Using the MATLAB Command Window
	Using the Simulink Library Browser

	Functions
	attachDatabase
	attributeInfo
	blfinfo
	blfread
	blfwrite
	canChannel
	can.ChannelInfo
	canChannelList
	canDatabase
	canFDChannel
	canFDChannelList
	canFDMessage
	canFDMessageBusType
	canFDMessageReplayBlockStruct
	canFDMessageTimetable
	canHWInfo
	canMessage
	canMessageBusType
	canMessageImport
	canMessageReplayBlockStruct
	canMessageTimetable
	canSignalImport
	canSignalTimetable
	canSupport
	canTool
	can.VendorInfo
	cdfx
	channelList
	configBusSpeed
	configBusSpeed (J1939)
	connect
	createMeasurementList
	discard
	discard (J1939)
	disconnect
	extractAll
	extractAll (J1939)
	extractRecent
	extractRecent (J1939)
	extractTime
	extractTime (J1939)
	filterAllowAll
	filterAllowAll (J1939)
	filterAllowOnly
	filterAllowOnly (J1939)
	filterBlockAll
	filterBlockOnly (J1939)
	freeMeasurementLists
	getCharacteristicInfo
	getEventInfo
	getMeasurementInfo
	getValue
	hasdata (MDFDatastore)
	instanceList
	isConnected
	isMeasurementRunning
	j1939Channel
	j1939ParameterGroup
	j1939ParameterGroupImport
	mdf
	mdfDatastore
	mdfInfo
	mdfSort
	mdfVisualize
	messageInfo
	nodeInfo
	numpartitions (MDFDatastore)
	pack
	partition (MDFDatastore)
	preview (MDFDatastore)
	read
	read (MDFDatastore)
	readall (MDFDatastore)
	readAxis
	readCharacteristic
	readDAQ
	readDAQListData
	readMeasurement
	readSingleValue
	receive
	receive (J1939)
	replay
	reset (MDFDatastore)
	saveAttachment
	setValue
	signalInfo
	start
	start (J1939)
	startMeasurement
	stop
	stop (J1939)
	stopMeasurement
	systemList
	transmit
	transmit (J1939)
	transmitConfiguration
	transmitEvent
	transmitPeriodic
	unpack
	valueTableText
	Vehicle CAN Bus Monitor
	viewMeasurementLists
	write
	writeAxis
	writeCharacteristic
	writeMeasurement
	writeSingleValue
	writeSTIM
	writeSTIMListData
	xcpA2L
	xcpChannel

	Properties
	AttributeInfo
	Attributes
	BusLoad
	BusSpeed
	BusStatus
	Data
	Database
	DestinationAddress
	Device
	Device(NI)
	DeviceChannelIndex
	DeviceSerialNumber
	DeviceVendor
	Error
	Extended
	FilterBlockList
	FilterPassList
	ID
	InitialTimestamp
	InitializationAccess
	MessageInfo
	MessageReceivedFcn
	MessageReceivedFcnCount
	Messages
	MessagesAvailable
	MessagesReceived
	MessagesTransmitted
	Name (Database)
	Name (CAN)
	Name (J1939)
	NodeInfo
	Nodes
	NumOfSamples
	OnboardTermination
	ParameterGroupsAvailable
	ParameterGroupsReceived
	ParameterGroupsTransmitted
	Path
	PDUFormatType
	PGN
	Priority
	ReceiveErrorCount
	Remote
	Running
	SilentMode
	SignalInfo
	Signals
	SJW
	SourceAddress
	StartTriggerTerminal
	Timestamp (CAN)
	Timestamp (J1939)
	TransceiverName
	TransceiverState
	TransmitErrorCount
	TSEG1
	TSEG2
	UserData
	Events
	Measurements
	DAQInfo
	SlaveName
	FileName
	FilePath
	ProtocolLayerInfo
	TransportLayerCANInfo
	A2LFileName
	SeedKeyDLL
	TransportLayer
	TransportLayerDevice

	Blocks
	CAN Configuration
	CAN FD Configuration
	CAN FD Log
	CAN FD Pack
	CAN FD Receive
	CAN FD Replay
	CAN FD Transmit
	CAN FD Unpack
	CAN Log
	CAN Pack
	CAN Receive
	CAN Replay
	CAN Transmit
	CAN Unpack
	J1939 CAN Transport Layer
	J1939 Network Configuration
	J1939 Node Configuration
	J1939 Receive
	J1939 Transmit
	XCP CAN Configuration
	XCP CAN Data Acquisition
	XCP CAN Data Stimulation
	XCP CAN Transport Layer
	XCP CAN Transport Layer Receive
	XCP CAN Transport Layer Transmit
	XCP UDP Configuration
	XCP UDP Data Acquisition
	XCP UDP Data Stimulation

